Goto

Collaborating Authors

 Song, Yuanfeng


PPC-GPT: Federated Task-Specific Compression of Large Language Models via Pruning and Chain-of-Thought Distillation

arXiv.org Artificial Intelligence

Compressing Large Language Models (LLMs) into task-specific Small Language Models (SLMs) encounters two significant challenges: safeguarding domain-specific knowledge privacy and managing limited resources. To tackle these challenges, we propose PPC-GPT, a innovative privacy-preserving federated framework specifically designed for compressing LLMs into task-specific SLMs via pruning and Chain-of-Thought (COT) distillation. PPC-GPT works on a server-client federated architecture, where the client sends differentially private (DP) perturbed task-specific data to the server's LLM. The LLM then generates synthetic data along with their corresponding rationales. This synthetic data is subsequently used for both LLM pruning and retraining processes. Additionally, we harness COT knowledge distillation, leveraging the synthetic data to further improve the retraining of structurally-pruned SLMs. Our experimental results demonstrate the effectiveness of PPC-GPT across various text generation tasks. By compressing LLMs into task-specific SLMs, PPC-GPT not only achieves competitive performance but also prioritizes data privacy protection.


Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation

arXiv.org Artificial Intelligence

NoSQL databases have become increasingly popular due to their outstanding performance in handling large-scale, unstructured, and semi-structured data, highlighting the need for user-friendly interfaces to bridge the gap between non-technical users and complex database queries. In this paper, we introduce the Text-to-NoSQL task, which aims to convert natural language queries into NoSQL queries, thereby lowering the technical barrier for non-expert users. To promote research in this area, we developed a novel automated dataset construction process and released a large-scale and open-source dataset for this task, named TEND (short for Text-to-NoSQL Dataset). Additionally, we designed a SLM (Small Language Model)-assisted and RAG (Retrieval-augmented Generation)-assisted multi-step framework called SMART, which is specifically designed for Text-to-NoSQL conversion. To ensure comprehensive evaluation of the models, we also introduced a detailed set of metrics that assess the model's performance from both the query itself and its execution results. Our experimental results demonstrate the effectiveness of our approach and establish a benchmark for future research in this emerging field. We believe that our contributions will pave the way for more accessible and intuitive interactions with NoSQL databases.


MultiTEND: A Multilingual Benchmark for Natural Language to NoSQL Query Translation

arXiv.org Artificial Intelligence

Natural language interfaces for NoSQL databases are increasingly vital in the big data era, enabling users to interact with complex, unstructured data without deep technical expertise. However, most recent advancements focus on English, leaving a gap for multilingual support. This paper introduces MultiTEND, the first and largest multilingual benchmark for natural language to NoSQL query generation, covering six languages: English, German, French, Russian, Japanese and Mandarin Chinese. Using MultiTEND, we analyze challenges in translating natural language to NoSQL queries across diverse linguistic structures, including lexical and syntactic differences. Experiments show that performance accuracy in both English and non-English settings remains relatively low, with a 4%-6% gap across scenarios like fine-tuned SLM, zero-shot LLM, and RAG for LLM. To address the aforementioned challenges, we introduce MultiLink, a novel framework that bridges the multilingual input to NoSQL query generation gap through a Parallel Linking Process. It breaks down the task into multiple steps, integrating parallel multilingual processing, Chain-of-Thought (CoT) reasoning, and Retrieval-Augmented Generation (RAG) to tackle lexical and structural challenges inherent in multilingual NoSQL generation. MultiLink shows enhancements in all metrics for every language against the top baseline, boosting execution accuracy by about 15% for English and averaging a 10% improvement for non-English languages.


Dial-In LLM: Human-Aligned Dialogue Intent Clustering with LLM-in-the-loop

arXiv.org Artificial Intelligence

The discovery of customer intention from dialogue plays an important role in automated support system. However, traditional text clustering methods are poorly aligned with human perceptions due to the shift from embedding distance to semantic distance, and existing quantitative metrics for text clustering may not accurately reflect the true quality of intent clusters. In this paper, we leverage the superior language understanding capabilities of Large Language Models (LLMs) for designing better-calibrated intent clustering algorithms. We first establish the foundation by verifying the robustness of fine-tuned LLM utility in semantic coherence evaluation and cluster naming, resulting in an accuracy of 97.50% and 94.40%, respectively, when compared to the human-labeled ground truth. Then, we propose an iterative clustering algorithm that facilitates cluster-level refinement and the continuous discovery of high-quality intent clusters. Furthermore, we present several LLM-in-the-loop semi-supervised clustering techniques tailored for intent discovery from customer service dialogue. Experiments on a large-scale industrial dataset comprising 1,507 intent clusters demonstrate the effectiveness of the proposed techniques. The methods outperformed existing counterparts, achieving 6.25% improvement in quantitative metrics and 12% enhancement in application-level performance when constructing an intent classifier.


ASR-EC Benchmark: Evaluating Large Language Models on Chinese ASR Error Correction

arXiv.org Artificial Intelligence

Automatic speech Recognition (ASR) is a fundamental and important task in the field of speech and natural language processing. It is an inherent building block in many applications such as voice assistant, speech translation, etc. Despite the advancement of ASR technologies in recent years, it is still inevitable for modern ASR systems to have a substantial number of erroneous recognition due to environmental noise, ambiguity, etc. Therefore, the error correction in ASR is crucial. Motivated by this, this paper studies ASR error correction in the Chinese language, which is one of the most popular languages and enjoys a large number of users in the world. We first create a benchmark dataset named \emph{ASR-EC} that contains a wide spectrum of ASR errors generated by industry-grade ASR systems. To the best of our knowledge, it is the first Chinese ASR error correction benchmark. Then, inspired by the recent advances in \emph{large language models (LLMs)}, we investigate how to harness the power of LLMs to correct ASR errors. We apply LLMs to ASR error correction in three paradigms. The first paradigm is prompting, which is further categorized as zero-shot, few-shot, and multi-step. The second paradigm is finetuning, which finetunes LLMs with ASR error correction data. The third paradigm is multi-modal augmentation, which collectively utilizes the audio and ASR transcripts for error correction. Extensive experiments reveal that prompting is not effective for ASR error correction. Finetuning is effective only for a portion of LLMs. Multi-modal augmentation is the most effective method for error correction and achieves state-of-the-art performance.


Expanding Chatbot Knowledge in Customer Service: Context-Aware Similar Question Generation Using Large Language Models

arXiv.org Artificial Intelligence

Reliable responses of service chatbots are often achieved by employing retrieval-based methods that restrict answers to a knowledge base comprising predefined question-answer pairs (QA pairs). To accommodate potential variations in how a customer's query may be expressed, it emerges as the favored solution to augment these QA pairs with similar questions that are possibly diverse while remaining semantic consistency. This augmentation task is known as Similar Question Generation (SQG). Traditional methods that heavily rely on human efforts or rule-based techniques suffer from limited diversity or significant semantic deviation from the source question, only capable of producing a finite number of useful questions. To address these limitations, we propose an SQG approach based on Large Language Models (LLMs), capable of producing a substantial number of diverse questions while maintaining semantic consistency to the source QA pair. This is achieved by leveraging LLMs' natural language understanding capability through fine-tuning with specially designed prompts. The experiments conducted on a real customer-service dataset demonstrate that our method surpasses baseline methods by a significant margin in terms of semantic diversity. Human evaluation further confirms that integrating the answer that reflects the customer's intention is crucial for increasing the number of generated questions that meet business requirements.


Neural-Bayesian Program Learning for Few-shot Dialogue Intent Parsing

arXiv.org Artificial Intelligence

With the growing importance of customer service in contemporary business, recognizing the intents behind service dialogues has become essential for the strategic success of enterprises. However, the nature of dialogue data varies significantly across different scenarios, and implementing an intent parser for a specific domain often involves tedious feature engineering and a heavy workload of data labeling. In this paper, we propose a novel Neural-Bayesian Program Learning model named Dialogue-Intent Parser (DI-Parser), which specializes in intent parsing under data-hungry settings and offers promising performance improvements. DI-Parser effectively utilizes data from multiple sources in a "Learning to Learn" manner and harnesses the "wisdom of the crowd" through few-shot learning capabilities on human-annotated datasets. Experimental results demonstrate that DI-Parser outperforms state-of-the-art deep learning models and offers practical advantages for industrial-scale applications.


InfantCryNet: A Data-driven Framework for Intelligent Analysis of Infant Cries

arXiv.org Artificial Intelligence

Understanding the meaning of infant cries is a significant challenge for young parents in caring for their newborns. The presence of background noise and the lack of labeled data present practical challenges in developing systems that can detect crying and analyze its underlying reasons. In this paper, we present a novel data-driven framework, "InfantCryNet," for accomplishing these tasks. To address the issue of data scarcity, we employ pre-trained audio models to incorporate prior knowledge into our model. We propose the use of statistical pooling and multi-head attention pooling techniques to extract features more effectively. Additionally, knowledge distillation and model quantization are applied to enhance model efficiency and reduce the model size, better supporting industrial deployment in mobile devices. Experiments on real-life datasets demonstrate the superior performance of the proposed framework, outperforming state-of-the-art baselines by 4.4% in classification accuracy. The model compression effectively reduces the model size by 7% without compromising performance and by up to 28% with only an 8% decrease in accuracy, offering practical insights for model selection and system design.


FedMKT: Federated Mutual Knowledge Transfer for Large and Small Language Models

arXiv.org Artificial Intelligence

Recent research in federated large language models (LLMs) has primarily focused on enabling clients to fine-tune their locally deployed homogeneous LLMs collaboratively or on transferring knowledge from server-based LLMs to small language models (SLMs) at downstream clients. However, a significant gap remains in the simultaneous mutual enhancement of both the server's LLM and clients' SLMs. To bridge this gap, we propose FedMKT, a parameter-efficient federated mutual knowledge transfer framework for large and small language models. This framework is designed to adaptively transfer knowledge from the server's LLM to clients' SLMs while concurrently enriching the LLM with clients' unique domain insights. We facilitate token alignment using minimum edit distance (MinED) and then selective mutual knowledge transfer between client-side SLMs and a server-side LLM, aiming to collectively enhance their performance. Through extensive experiments across three distinct scenarios, we evaluate the effectiveness of FedMKT using various public LLMs and SLMs on a range of NLP text generation tasks. Empirical results demonstrate that FedMKT simultaneously boosts the performance of both LLMs and SLMs.


PDSS: A Privacy-Preserving Framework for Step-by-Step Distillation of Large Language Models

arXiv.org Artificial Intelligence

In the context of real-world applications, leveraging large language models (LLMs) for domain-specific tasks often faces two major challenges: domain-specific knowledge privacy and constrained resources. To address these issues, we propose PDSS, a privacy-preserving framework for step-by-step distillation of LLMs. PDSS works on a server-client architecture, wherein client transmits perturbed prompts to the server's LLM for rationale generation. The generated rationales are then decoded by the client and used to enrich the training of task-specific small language model(SLM) within a multi-task learning paradigm. PDSS introduces two privacy protection strategies: the Exponential Mechanism Strategy and the Encoder-Decoder Strategy, balancing prompt privacy and rationale usability. Experiments demonstrate the effectiveness of PDSS in various text generation tasks, enabling the training of task-specific SLM with enhanced performance while prioritizing data privacy protection.