Song, Xiangfu
LicenseGPT: A Fine-tuned Foundation Model for Publicly Available Dataset License Compliance
Tan, Jingwen, Rajbahadur, Gopi Krishnan, Li, Zi, Song, Xiangfu, Lin, Jianshan, Li, Dan, Zheng, Zibin, Hassan, Ahmed E.
Dataset license compliance is a critical yet complex aspect of developing commercial AI products, particularly with the increasing use of publicly available datasets. Ambiguities in dataset licenses pose significant legal risks, making it challenging even for software IP lawyers to accurately interpret rights and obligations. In this paper, we introduce LicenseGPT, a fine-tuned foundation model (FM) specifically designed for dataset license compliance analysis. We first evaluate existing legal FMs (i.e., FMs specialized in understanding and processing legal texts) and find that the best-performing model achieves a Prediction Agreement (PA) of only 43.75%. LicenseGPT, fine-tuned on a curated dataset of 500 licenses annotated by legal experts, significantly improves PA to 64.30%, outperforming both legal and general-purpose FMs. Through an A/B test and user study with software IP lawyers, we demonstrate that LicenseGPT reduces analysis time by 94.44%, from 108 seconds to 6 seconds per license, without compromising accuracy. Software IP lawyers perceive LicenseGPT as a valuable supplementary tool that enhances efficiency while acknowledging the need for human oversight in complex cases. Our work underscores the potential of specialized AI tools in legal practice and offers a publicly available resource for practitioners and researchers.
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Wang, Shaowei, Dong, Changyu, Song, Xiangfu, Li, Jin, Zhou, Zhili, Wang, Di, Wu, Han
In data-driven applications, preserving user privacy while enabling valuable computations remains a critical challenge. Technologies like Differential Privacy (DP) have been pivotal in addressing these concerns. The shuffle model of DP requires no trusted curators and can achieve high utility by leveraging the privacy amplification effect yielded from shuffling. These benefits have led to significant interest in the shuffle model. However, the computation tasks in the shuffle model are limited to statistical estimation, making the shuffle model inapplicable to real-world scenarios in which each user requires a personalized output. This paper introduces a novel paradigm termed Private Individual Computation (PIC), expanding the shuffle model to support a broader range of permutation-equivariant computations. PIC enables personalized outputs while preserving privacy, and enjoys privacy amplification through shuffling. We propose a concrete protocol that realizes PIC. By using one-time public keys, our protocol enables users to receive their outputs without compromising anonymity, which is essential for privacy amplification. Additionally, we present an optimal randomizer, the Minkowski Response, designed for the PIC model to enhance utility. We formally prove the security and privacy properties of the PIC protocol. Theoretical analysis and empirical evaluations demonstrate PIC's capability in handling non-statistical computation tasks, and the efficacy of PIC and the Minkowski randomizer in achieving superior utility compared to existing solutions.