Song, Shenghui
Siamese Machine Unlearning with Knowledge Vaporization and Concentration
Xie, Songjie, He, Hengtao, Song, Shenghui, Zhang, Jun, Letaief, Khaled B.
In response to the practical demands of the ``right to be forgotten" and the removal of undesired data, machine unlearning emerges as an essential technique to remove the learned knowledge of a fraction of data points from trained models. However, existing methods suffer from limitations such as insufficient methodological support, high computational complexity, and significant memory demands. In this work, we propose the concepts of knowledge vaporization and concentration to selectively erase learned knowledge from specific data points while maintaining representations for the remaining data. Utilizing the Siamese networks, we exemplify the proposed concepts and develop an efficient method for machine unlearning. Our proposed Siamese unlearning method does not require additional memory overhead and full access to the remaining dataset. Extensive experiments conducted across multiple unlearning scenarios showcase the superiority of Siamese unlearning over baseline methods, illustrating its ability to effectively remove knowledge from forgetting data, enhance model utility on remaining data, and reduce susceptibility to membership inference attacks.
Federated Low-Rank Adaptation with Differential Privacy over Wireless Networks
Kang, Tianqu, Wang, Zixin, He, Hengtao, Zhang, Jun, Song, Shenghui, Letaief, Khaled B.
Fine-tuning large pre-trained foundation models (FMs) on distributed edge devices presents considerable computational and privacy challenges. Federated fine-tuning (FedFT) mitigates some privacy issues by facilitating collaborative model training without the need to share raw data. To lessen the computational burden on resource-limited devices, combining low-rank adaptation (LoRA) with federated learning enables parameter-efficient fine-tuning. Additionally, the split FedFT architecture partitions an FM between edge devices and a central server, reducing the necessity for complete model deployment on individual devices. However, the risk of privacy eavesdropping attacks in FedFT remains a concern, particularly in sensitive areas such as healthcare and finance. In this paper, we propose a split FedFT framework with differential privacy (DP) over wireless networks, where the inherent wireless channel noise in the uplink transmission is utilized to achieve DP guarantees without adding an extra artificial noise. We shall investigate the impact of the wireless noise on convergence performance of the proposed framework. We will also show that by updating only one of the low-rank matrices in the split FedFT with DP, the proposed method can mitigate the noise amplification effect. Simulation results will demonstrate that the proposed framework achieves higher accuracy under strict privacy budgets compared to baseline methods.
Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck
Li, Hongru, Shao, Jiawei, He, Hengtao, Song, Shenghui, Zhang, Jun, Letaief, Khaled B.
Task-oriented communication aims to extract and transmit task-relevant information to significantly reduce the communication overhead and transmission latency. However, the unpredictable distribution shifts between training and test data, including domain shift and semantic shift, can dramatically undermine the system performance. In order to tackle these challenges, it is crucial to ensure that the encoded features can generalize to domain-shifted data and detect semanticshifted data, while remaining compact for transmission. In this paper, we propose a novel approach based on the information bottleneck (IB) principle and invariant risk minimization (IRM) framework. The proposed method aims to extract compact and informative features that possess high capability for effective domain-shift generalization and accurate semantic-shift detection without any knowledge of the test data during training. Specifically, we propose an invariant feature encoding approach based on the IB principle and IRM framework for domainshift generalization, which aims to find the causal relationship between the input data and task result by minimizing the complexity and domain dependence of the encoded feature. Furthermore, we enhance the task-oriented communication with the label-dependent feature encoding approach for semanticshift detection which achieves joint gains in IB optimization and detection performance. To avoid the intractable computation of the IB-based objective, we leverage variational approximation to derive a tractable upper bound for optimization. Extensive simulation results on image classification tasks demonstrate that the proposed scheme outperforms state-of-the-art approaches and achieves a better rate-distortion tradeoff.
How Robust is Federated Learning to Communication Error? A Comparison Study Between Uplink and Downlink Channels
Qu, Linping, Song, Shenghui, Tsui, Chi-Ying, Mao, Yuyi
Because of its privacy-preserving capability, federated learning (FL) has attracted significant attention from both academia and industry. However, when being implemented over wireless networks, it is not clear how much communication error can be tolerated by FL. This paper investigates the robustness of FL to the uplink and downlink communication error. Our theoretical analysis reveals that the robustness depends on two critical parameters, namely the number of clients and the numerical range of model parameters. It is also shown that the uplink communication in FL can tolerate a higher bit error rate (BER) than downlink communication, and this difference is quantified by a proposed formula. The findings and theoretical analyses are further validated by extensive experiments.
FedSDD: Scalable and Diversity-enhanced Distillation for Model Aggregation in Federated Learning
Kwan, Ho Man, Song, Shenghui
Recently, innovative model aggregation methods based on knowledge distillation (KD) have been proposed for federated learning (FL). These methods not only improved the robustness of model aggregation over heterogeneous learning environment, but also allowed training heterogeneous models on client devices. However, the scalability of existing methods is not satisfactory, because the training cost on the server increases with the number of clients, which limits their application in large scale systems. Furthermore, the ensemble of existing methods is built from a set of client models initialized from the same checkpoint, causing low diversity. In this paper, we propose a scalable and diversity-enhanced federated distillation scheme, FedSDD, which decouples the training complexity from the number of clients to enhance the scalability, and builds the ensemble from a set of aggregated models with enhanced diversity. In particular, the teacher model in FedSDD is an ensemble built by a small group of aggregated (global) models, instead of all client models, such that the computation cost will not scale with the number of clients. Furthermore, to enhance diversity, FedSDD only performs KD to enhance one of the global models, i.e., the \textit{main global model}, which improves the performance of both the ensemble and the main global model. While partitioning client model into more groups allow building an ensemble with more aggregated models, the convergence of individual aggregated models will be slow down. We introduce the temporal ensembling which leverage the issues, and provide significant improvement with the heterogeneous settings. Experiment results show that FedSDD outperforms other FL methods, including FedAvg and FedDF, on the benchmark datasets.
Message Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems
He, Hengtao, Yu, Xianghao, Zhang, Jun, Song, Shenghui, Letaief, Khaled B.
As one of the core technologies for 5G systems, massive multiple-input multiple-output (MIMO) introduces dramatic capacity improvements along with very high beamforming and spatial multiplexing gains. When developing efficient physical layer algorithms for massive MIMO systems, message passing is one promising candidate owing to the superior performance. However, as their computational complexity increases dramatically with the problem size, the state-of-the-art message passing algorithms cannot be directly applied to future 6G systems, where an exceedingly large number of antennas are expected to be deployed. To address this issue, we propose a model-driven deep learning (DL) framework, namely the AMP-GNN for massive MIMO transceiver design, by considering the low complexity of the AMP algorithm and adaptability of GNNs. Specifically, the structure of the AMP-GNN network is customized by unfolding the approximate message passing (AMP) algorithm and introducing a graph neural network (GNN) module into it. The permutation equivariance property of AMP-GNN is proved, which enables the AMP-GNN to learn more efficiently and to adapt to different numbers of users. We also reveal the underlying reason why GNNs improve the AMP algorithm from the perspective of expectation propagation, which motivates us to amalgamate various GNNs with different message passing algorithms. In the simulation, we take the massive MIMO detection to exemplify that the proposed AMP-GNN significantly improves the performance of the AMP detector, achieves comparable performance as the state-of-the-art DL-based MIMO detectors, and presents strong robustness to various mismatches.
Binary Federated Learning with Client-Level Differential Privacy
Liu, Lumin, Zhang, Jun, Song, Shenghui, Letaief, Khaled B.
Federated learning (FL) is a privacy-preserving collaborative learning framework, and differential privacy can be applied to further enhance its privacy protection. Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm and implement differential privacy with a Gaussian mechanism. However, the inherent privacy-utility trade-off in these systems severely degrades the training performance if a tight privacy budget is enforced. Besides, the Gaussian mechanism requires model weights to be of high-precision. To improve communication efficiency and achieve a better privacy-utility trade-off, we propose a communication-efficient FL training algorithm with differential privacy guarantee. Specifically, we propose to adopt binary neural networks (BNNs) and introduce discrete noise in the FL setting. Binary model parameters are uploaded for higher communication efficiency and discrete noise is added to achieve the client-level differential privacy protection. The achieved performance guarantee is rigorously proved, and it is shown to depend on the level of discrete noise. Experimental results based on MNIST and Fashion-MNIST datasets will demonstrate that the proposed training algorithm achieves client-level privacy protection with performance gain while enjoying the benefits of low communication overhead from binary model updates.
Handling Group Fairness in Federated Learning Using Augmented Lagrangian Approach
Dunda, Gerry Windiarto Mohamad, Song, Shenghui
Federated learning (FL) has garnered considerable attention due to its privacy-preserving feature. Nonetheless, the lack of freedom in managing user data can lead to group fairness issues, where models might be biased towards sensitive factors such as race or gender, even if they are trained using a legally compliant process. To redress this concern, this paper proposes a novel FL algorithm designed explicitly to address group fairness issues. We show empirically on CelebA and ImSitu datasets that the proposed method can improve fairness both quantitatively and qualitatively with minimal loss in accuracy in the presence of statistical heterogeneity and with different numbers of clients. Besides improving fairness, the proposed FL algorithm is compatible with local differential privacy (LDP), has negligible communication costs, and results in minimal overhead when migrating existing FL systems from the common FL protocol such as FederatedAveraging (FedAvg). We also provide the theoretical convergence rate guarantee for the proposed algorithm and the required noise level of the Gaussian mechanism to achieve desired LDP. This innovative approach holds significant potential to enhance the fairness and effectiveness of FL systems, particularly in sensitive applications such as healthcare or criminal justice.
Lightweight and Flexible Deep Equilibrium Learning for CSI Feedback in FDD Massive MIMO
Ma, Yifan, Yu, Wentao, Yu, Xianghao, Zhang, Jun, Song, Shenghui, Letaief, Khaled B.
In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) needs to be sent back to the base station (BS) by the users, which causes prohibitive feedback overhead. In this paper, we propose a lightweight and flexible deep learning-based CSI feedback approach by capitalizing on deep equilibrium models. Different from existing deep learning-based methods that stack multiple explicit layers, we propose an implicit equilibrium block to mimic the behavior of an infinite-depth neural network. In particular, the implicit equilibrium block is defined by a fixed-point iteration and the trainable parameters in different iterations are shared, which results in a lightweight model. Furthermore, the number of forward iterations can be adjusted according to users' computation capability, enabling a flexible accuracy-efficiency trade-off. Simulation results will show that the proposed design obtains a comparable performance as the benchmarks but with much-reduced complexity and permits an accuracy-efficiency trade-off at runtime.
Local SGD Accelerates Convergence by Exploiting Second Order Information of the Loss Function
Pan, Linxuan, Song, Shenghui
With multiple iterations of updates, local statistical gradient descent (L-SGD) has been proven to be very effective in distributed machine learning schemes such as federated learning. In fact, many innovative works have shown that L-SGD with independent and identically distributed (IID) data can even outperform SGD. As a result, extensive efforts have been made to unveil the power of L-SGD. However, existing analysis failed to explain why the multiple local updates with small mini-batches of data (L-SGD) can not be replaced by the update with one big batch of data and a larger learning rate (SGD). In this paper, we offer a new perspective to understand the strength of L-SGD. We theoretically prove that, with IID data, L-SGD can effectively explore the second order information of the loss function. In particular, compared with SGD, the updates of L-SGD have much larger projection on the eigenvectors of the Hessian matrix with small eigenvalues, which leads to faster convergence. Under certain conditions, L-SGD can even approach the Newton method.