Song, Kenan
A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Tian, Jie, Sobczak, Martin Taylor, Patil, Dhanush, Hou, Jixin, Pang, Lin, Ramanathan, Arunachalam, Yang, Libin, Chen, Xianyan, Golan, Yuval, Zhai, Xiaoming, Sun, Hongyue, Song, Kenan, Wang, Xianqiao
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor - intensive trial - and - error methods and limited data interoperability. Here, we introduce CrossMatAgent -- a novel multi - agent framework that synergistically integrates large language models with state - of - the - art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents -- e ach specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback -- our system leverages the multimodal reasoning of GPT - 4o alongside the generative precision of DALL - E 3 and a fine - tuned Stable Diffusion Extra Large ( XL) model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation - and 3D printing - ready metamaterial patterns. Comprehensive evaluations, including Contrastive Language - Image Pre - training ( C LIP) - based alignment, SHAP ( SHapley Additive exPlanations) interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application - ready designs . CrossMatAgent thus establishes a scalable, AI - driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
Large Language Models for Bioinformatics
Ruan, Wei, Lyu, Yanjun, Zhang, Jing, Cai, Jiazhang, Shu, Peng, Ge, Yang, Lu, Yao, Gao, Shang, Wang, Yue, Wang, Peilong, Zhao, Lin, Wang, Tao, Liu, Yufang, Fang, Luyang, Liu, Ziyu, Liu, Zhengliang, Li, Yiwei, Wu, Zihao, Chen, Junhao, Jiang, Hanqi, Pan, Yi, Yang, Zhenyuan, Chen, Jingyuan, Liang, Shizhe, Zhang, Wei, Ma, Terry, Dou, Yuan, Zhang, Jianli, Gong, Xinyu, Gan, Qi, Zou, Yusong, Chen, Zebang, Qian, Yuanxin, Yu, Shuo, Lu, Jin, Song, Kenan, Wang, Xianqiao, Sikora, Andrea, Li, Gang, Li, Xiang, Li, Quanzheng, Wang, Yingfeng, Zhang, Lu, Abate, Yohannes, He, Lifang, Zhong, Wenxuan, Liu, Rongjie, Huang, Chao, Liu, Wei, Shen, Ye, Ma, Ping, Zhu, Hongtu, Yan, Yajun, Zhu, Dajiang, Liu, Tianming
With the rapid advancements in large language model (LLM) technology and the emergence of bioinformatics-specific language models (BioLMs), there is a growing need for a comprehensive analysis of the current landscape, computational characteristics, and diverse applications. This survey aims to address this need by providing a thorough review of BioLMs, focusing on their evolution, classification, and distinguishing features, alongside a detailed examination of training methodologies, datasets, and evaluation frameworks. We explore the wide-ranging applications of BioLMs in critical areas such as disease diagnosis, drug discovery, and vaccine development, highlighting their impact and transformative potential in bioinformatics. We identify key challenges and limitations inherent in BioLMs, including data privacy and security concerns, interpretability issues, biases in training data and model outputs, and domain adaptation complexities. Finally, we highlight emerging trends and future directions, offering valuable insights to guide researchers and clinicians toward advancing BioLMs for increasingly sophisticated biological and clinical applications.
Large Language Models for Manufacturing
Li, Yiwei, Zhao, Huaqin, Jiang, Hanqi, Pan, Yi, Liu, Zhengliang, Wu, Zihao, Shu, Peng, Tian, Jie, Yang, Tianze, Xu, Shaochen, Lyu, Yanjun, Blenk, Parker, Pence, Jacob, Rupram, Jason, Banu, Eliza, Liu, Ninghao, Wang, Linbing, Song, Wenzhan, Zhai, Xiaoming, Song, Kenan, Zhu, Dajiang, Li, Beiwen, Wang, Xianqiao, Liu, Tianming
The rapid advances in Large Language Models (LLMs) have the potential to transform manufacturing industry, offering new opportunities to optimize processes, improve efficiency, and drive innovation. This paper provides a comprehensive exploration of the integration of LLMs into the manufacturing domain, focusing on their potential to automate and enhance various aspects of manufacturing, from product design and development to quality control, supply chain optimization, and talent management. Through extensive evaluations across multiple manufacturing tasks, we demonstrate the remarkable capabilities of state-of-the-art LLMs, such as GPT-4V, in understanding and executing complex instructions, extracting valuable insights from vast amounts of data, and facilitating knowledge sharing. We also delve into the transformative potential of LLMs in reshaping manufacturing education, automating coding processes, enhancing robot control systems, and enabling the creation of immersive, data-rich virtual environments through the industrial metaverse. By highlighting the practical applications and emerging use cases of LLMs in manufacturing, this paper aims to provide a valuable resource for professionals, researchers, and decision-makers seeking to harness the power of these technologies to address real-world challenges, drive operational excellence, and unlock sustainable growth in an increasingly competitive landscape.