Son, Guijin
Won: Establishing Best Practices for Korean Financial NLP
Son, Guijin, Ko, Hyunwoo, Jung, Haneral, Hwang, Chami
In this work, we present the first open leaderboard for evaluating Korean large language models focused on finance. Operated for about eight weeks, the leaderboard evaluated 1,119 submissions on a closed benchmark covering five MCQA categories: finance and accounting, stock price prediction, domestic company analysis, financial markets, and financial agent tasks and one open-ended qa task. Building on insights from these evaluations, we release an open instruction dataset of 80k instances and summarize widely used training strategies observed among top-performing models. Finally, we introduce Won, a fully open and transparent LLM built using these best practices. We hope our contributions help advance the development of better and safer financial LLMs for Korean and other languages.
Linguistic Generalizability of Test-Time Scaling in Mathematical Reasoning
Son, Guijin, Hong, Jiwoo, Ko, Hyunwoo, Thorne, James
Scaling pre-training compute has proven effective for achieving mulitlinguality, but does the same hold for test-time scaling? In this work, we introduce MCLM, a multilingual math benchmark featuring competition-level problems in 55 languages. We test three test-time scaling methods-Outcome Reward Modeling (ORM), Process Reward Modeling (ORM), and Budget Forcing (BF)-on both Qwen2.5-1.5B Math and MR1-1.5B, a multilingual LLM we trained for extended reasoning. Our experiments show that using Qwen2.5-1.5B Math with ORM achieves a score of 35.8 on MCLM, while BF on MR1-1.5B attains 35.2. Although "thinking LLMs" have recently garnered significant attention, we find that their performance is comparable to traditional scaling methods like best-of-N once constrained to similar levels of inference FLOPs. Moreover, while BF yields a 20-point improvement on English AIME, it provides only a 1.94-point average gain across other languages-a pattern consistent across the other test-time scaling methods we studied-higlighting that test-time scaling may not generalize as effectively to multilingual tasks. To foster further research, we release MCLM, MR1-1.5B, and evaluation results.
Multi-Step Reasoning in Korean and the Emergent Mirage
Son, Guijin, Ko, Hyunwoo, Choi, Dasol
We introduce HRMCR (HAE-RAE Multi-Step Commonsense Reasoning), a benchmark designed to evaluate large language models' ability to perform multi-step reasoning in culturally specific contexts, focusing on Korean. The questions are automatically generated via templates and algorithms, requiring LLMs to integrate Korean cultural knowledge into sequential reasoning steps. Consistent with prior observations on emergent abilities, our experiments reveal that models trained on fewer than \(2 \cdot 10^{25}\) training FLOPs struggle to solve any questions, showing near-zero performance. Beyond this threshold, performance improves sharply. State-of-the-art models (e.g., O1) still score under 50\%, underscoring the difficulty of our tasks. Notably, stepwise analysis suggests the observed emergent behavior may stem from compounding errors across multiple steps rather than reflecting a genuinely new capability. We publicly release the benchmark and commit to regularly updating the dataset to prevent contamination.
Understand, Solve and Translate: Bridging the Multilingual Mathematical Reasoning Gap
Ko, Hyunwoo, Son, Guijin, Choi, Dasol
Large language models (LLMs) demonstrate exceptional performance on complex reasoning tasks. However, despite their strong reasoning capabilities in high-resource languages (e.g., English and Chinese), a significant performance gap persists in other languages. To investigate this gap in Korean, we introduce HRM8K, a benchmark comprising 8,011 English-Korean parallel bilingual math problems. Through systematic analysis of model behaviors, we identify a key finding: these performance disparities stem primarily from difficulties in comprehending non-English inputs, rather than limitations in reasoning capabilities. Based on these findings, we propose UST (Understand, Solve, and Translate), a method that strategically uses English as an anchor for reasoning and solution generation. By fine-tuning the model on 130k synthetically generated data points, UST achieves a 10.91% improvement on the HRM8K benchmark and reduces the multilingual performance gap from 11.6% to 0.7%. Additionally, we show that improvements from UST generalize effectively to different Korean domains, demonstrating that capabilities acquired from machine-verifiable content can be generalized to other areas. We publicly release the benchmark, training dataset, and models.
Improving Fine-grained Visual Understanding in VLMs through Text-Only Training
Choi, Dasol, Son, Guijin, Kim, Soo Yong, Paik, Gio, Hong, Seunghyeok
Visual-Language Models (VLMs) have become a powerful tool for bridging the gap between visual and linguistic understanding. However, the conventional learning approaches for VLMs often suffer from limitations, such as the high resource requirements of collecting and training image-text paired data. Recent research has suggested that language understanding plays a crucial role in the performance of VLMs, potentially indicating that text-only training could be a viable approach. In this work, we investigate the feasibility of enhancing fine-grained visual understanding in VLMs through text-only training. Inspired by how humans develop visual concept understanding, where rich textual descriptions can guide visual recognition, we hypothesize that VLMs can also benefit from leveraging text-based representations to improve their visual recognition abilities. We conduct comprehensive experiments on two distinct domains: fine-grained species classification and cultural visual understanding tasks. Our findings demonstrate that text-only training can be comparable to conventional image-text training while significantly reducing computational costs. This suggests a more efficient and cost-effective pathway for advancing VLM capabilities, particularly valuable in resource-constrained environments.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Son, Guijin, Yoon, Dongkeun, Suk, Juyoung, Aula-Blasco, Javier, Aslan, Mano, Kim, Vu Trong, Islam, Shayekh Bin, Prats-Cristiร , Jaume, Tormo-Baรฑuelos, Lucรญa, Kim, Seungone
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models
Kim, Seungone, Suk, Juyoung, Cho, Ji Yong, Longpre, Shayne, Kim, Chaeeun, Yoon, Dongkeun, Son, Guijin, Cho, Yejin, Shafayat, Sheikh, Baek, Jinheon, Park, Sue Hyun, Hwang, Hyeonbin, Jo, Jinkyung, Cho, Hyowon, Shin, Haebin, Lee, Seongyun, Oh, Hanseok, Lee, Noah, Ho, Namgyu, Joo, Se June, Ko, Miyoung, Lee, Yoonjoo, Chae, Hyungjoo, Shin, Jamin, Jang, Joel, Ye, Seonghyeon, Lin, Bill Yuchen, Welleck, Sean, Neubig, Graham, Lee, Moontae, Lee, Kyungjae, Seo, Minjoon
As language models (LMs) become capable of handling a wide range of tasks, their evaluation is becoming as challenging as their development. Most generation benchmarks currently assess LMs using abstract evaluation criteria like helpfulness and harmlessness, which often lack the flexibility and granularity of human assessment. Additionally, these benchmarks tend to focus disproportionately on specific capabilities such as instruction following, leading to coverage bias. To overcome these limitations, we introduce the BiGGen Bench, a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks. A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation. We apply this benchmark to assess 103 frontier LMs using five evaluator LMs. Our code, data, and evaluation results are all publicly available at https://github.com/prometheus-eval/prometheus-eval/tree/main/BiGGen-Bench.
Multi-Task Inference: Can Large Language Models Follow Multiple Instructions at Once?
Son, Guijin, Baek, Sangwon, Nam, Sangdae, Jeong, Ilgyun, Kim, Seungone
Large language models (LLMs) are typically prompted to follow a single instruction per inference call. In this work, we analyze whether LLMs also hold the capability to handle multiple instructions simultaneously, denoted as Multi-Task Inference. For this purpose, we introduce the MTI Bench(Multi-Task Inference Benchmark), a comprehensive evaluation benchmark encompassing 5,000 instances across 25 tasks. Each task in the MTI Bench involves 2 to 3 sub-tasks. As expected, we first demonstrate that Multi-Task Inference reduces the total inference time by 1.46 times in average since it does not require multiple inference calls. Interestingly, contrary to the expectation that LLMs would perform better when tasks are divided, we find that state-of-the-art LLMs, such as Llama-2-Chat-70B and GPT-4, show up to 7.3% and 12.4% improved performance with Multi-Task Inference compared to Single-Task Inference on the MTI Bench. We release the MTI Bench dataset and our code at this link https://github.com/guijinSON/MTI-Bench.
KMMLU: Measuring Massive Multitask Language Understanding in Korean
Son, Guijin, Lee, Hanwool, Kim, Sungdong, Kim, Seungone, Muennighoff, Niklas, Choi, Taekyoon, Park, Cheonbok, Yoo, Kang Min, Biderman, Stella
We propose KMMLU, a new Korean benchmark with 35,030 expert-level multiple-choice questions across 45 subjects ranging from humanities to STEM. While prior Korean benchmarks are translated from existing English benchmarks, KMMLU is collected from original Korean exams, capturing linguistic and cultural aspects of the Korean language. We test 27 public and proprietary LLMs and observe the best public model to score 50.5%, leaving significant room for improvement. This model was primarily trained for English and Chinese, not Korean. Current LLMs tailored to Korean, such as Polyglot-Ko, perform far worse. Surprisingly, even the most capable proprietary LLMs, e.g., GPT-4 and HyperCLOVA X do not exceed 60%. This suggests that further work is needed to improve LLMs for Korean, and we believe KMMLU offers the appropriate tool to track this progress. We make our dataset publicly available on the Hugging Face Hub and integrate the benchmark into EleutherAI's Language Model Evaluation Harness.
ESG Classification by Implicit Rule Learning via GPT-4
Yun, Hyo Jeong, Kim, Chanyoung, Hahm, Moonjeong, Kim, Kyuri, Son, Guijin
Environmental, social, and governance (ESG) factors are widely adopted as higher investment return indicators. Accordingly, ongoing efforts are being made to automate ESG evaluation with language models to extract signals from massive web text easily. However, recent approaches suffer from a lack of training data, as rating agencies keep their evaluation metrics confidential. This paper investigates whether state-of-the-art language models like GPT-4 can be guided to align with unknown ESG evaluation criteria through strategies such as prompting, chain-of-thought reasoning, and dynamic in-context learning. We demonstrate the efficacy of these approaches by ranking 2nd in the Shared-Task ML-ESG-3 Impact Type track for Korean without updating the model on the provided training data. We also explore how adjusting prompts impacts the ability of language models to address financial tasks leveraging smaller models with openly available weights. We observe longer general pre-training to correlate with enhanced performance in financial downstream tasks. Our findings showcase the potential of language models to navigate complex, subjective evaluation guidelines despite lacking explicit training examples, revealing opportunities for training-free solutions for financial downstream tasks.