Goto

Collaborating Authors

 Soltani, Nasim


VERITAS: Verifying the Performance of AI-native Transceiver Actions in Base-Stations

arXiv.org Artificial Intelligence

Artificial Intelligence (AI)-native receivers prove significant performance improvement in high noise regimes and can potentially reduce communication overhead compared to the traditional receiver. However, their performance highly depends on the representativeness of the training dataset. A major issue is the uncertainty of whether the training dataset covers all test environments and waveform configurations, and thus, whether the trained model is robust in practical deployment conditions. To this end, we propose a joint measurement-recovery framework for AI-native transceivers post deployment, called VERITAS, that continuously looks for distribution shifts in the received signals and triggers finite re-training spurts. VERITAS monitors the wireless channel using 5G pilots fed to an auxiliary neural network that detects out-of-distribution channel profile, transmitter speed, and delay spread. As soon as such a change is detected, a traditional (reference) receiver is activated, which runs for a period of time in parallel to the AI-native receiver. Finally, VERTIAS compares the bit probabilities of the AI-native and the reference receivers for the same received data inputs, and decides whether or not a retraining process needs to be initiated. Our evaluations reveal that VERITAS can detect changes in the channel profile, transmitter speed, and delay spread with 99%, 97%, and 69% accuracies, respectively, followed by timely initiation of retraining for 86%, 93.3%, and 94.8% of inputs in channel profile, transmitter speed, and delay spread test sets, respectively.


Learning from the Best: Active Learning for Wireless Communications

arXiv.org Artificial Intelligence

Collecting an over-the-air wireless communications training dataset for deep learning-based communication tasks is relatively simple. However, labeling the dataset requires expert involvement and domain knowledge, may involve private intellectual properties, and is often computationally and financially expensive. Active learning is an emerging area of research in machine learning that aims to reduce the labeling overhead without accuracy degradation. Active learning algorithms identify the most critical and informative samples in an unlabeled dataset and label only those samples, instead of the complete set. In this paper, we introduce active learning for deep learning applications in wireless communications, and present its different categories. We present a case study of deep learning-based mmWave beam selection, where labeling is performed by a compute-intensive algorithm based on exhaustive search. We evaluate the performance of different active learning algorithms on a publicly available multi-modal dataset with different modalities including image and LiDAR. Our results show that using an active learning algorithm for class-imbalanced datasets can reduce labeling overhead by up to 50% for this dataset while maintaining the same accuracy as classical training.


PRONTO: Preamble Overhead Reduction with Neural Networks for Coarse Synchronization

arXiv.org Artificial Intelligence

In IEEE 802.11 WiFi-based waveforms, the receiver performs coarse time and frequency synchronization using the first field of the preamble known as the legacy short training field (L-STF). The L-STF occupies upto 40% of the preamble length and takes upto 32 us of airtime. With the goal of reducing communication overhead, we propose a modified waveform, where the preamble length is reduced by eliminating the L-STF. To decode this modified waveform, we propose a neural network (NN)-based scheme called PRONTO that performs coarse time and frequency estimations using other preamble fields, specifically the legacy long training field (L-LTF). Our contributions are threefold: (i) We present PRONTO featuring customized convolutional neural networks (CNNs) for packet detection and coarse carrier frequency offset (CFO) estimation, along with data augmentation steps for robust training. (ii) We propose a generalized decision flow that makes PRONTO compatible with legacy waveforms that include the standard L-STF. (iii) We validate the outcomes on an over-the-air WiFi dataset from a testbed of software defined radios (SDRs). Our evaluations show that PRONTO can perform packet detection with 100% accuracy, and coarse CFO estimation with errors as small as 3%. We demonstrate that PRONTO provides upto 40% preamble length reduction with no bit error rate (BER) degradation. We further show that PRONTO is able to achieve the same performance in new environments without the need to re-train the CNNs. Finally, we experimentally show the speedup achieved by PRONTO through GPU parallelization over the corresponding CPU-only implementations.