Goto

Collaborating Authors

 Solihin, Yan


Uncovering the Hidden Threat of Text Watermarking from Users with Cross-Lingual Knowledge

arXiv.org Artificial Intelligence

In this study, we delve into the hidden threats posed to text watermarking by users with cross-lingual knowledge. While most research focuses on watermarking methods for English, there is a significant gap in evaluating these methods in cross-lingual contexts. This oversight neglects critical adversary scenarios involving cross-lingual users, creating uncertainty regarding the effectiveness of cross-lingual watermarking. We assess four watermarking techniques across four linguistically rich languages, examining watermark resilience and text quality across various parameters and attacks. Our focus is on a realistic scenario featuring adversaries with cross-lingual expertise, evaluating the adequacy of current watermarking methods against such challenges.


Jailbreaking LLMs with Arabic Transliteration and Arabizi

arXiv.org Artificial Intelligence

This study identifies the potential vulnerabilities of Large Language Models (LLMs) to 'jailbreak' attacks, specifically focusing on the Arabic language and its various forms. While most research has concentrated on English-based prompt manipulation, our investigation broadens the scope to investigate the Arabic language. We initially tested the AdvBench benchmark in Standardized Arabic, finding that even with prompt manipulation techniques like prefix injection, it was insufficient to provoke LLMs into generating unsafe content. However, when using Arabic transliteration and chatspeak (or arabizi), we found that unsafe content could be produced on platforms like OpenAI GPT-4 and Anthropic Claude 3 Sonnet. Our findings suggest that using Arabic and its various forms could expose information that might remain hidden, potentially increasing the risk of jailbreak attacks. We hypothesize that this exposure could be due to the model's learned connection to specific words, highlighting the need for more comprehensive safety training across all language forms.