Goto

Collaborating Authors

 Smith, Digory


Improving Automated Distractor Generation for Math Multiple-choice Questions with Overgenerate-and-rank

arXiv.org Artificial Intelligence

Multiple-choice questions (MCQs) are commonly used across all levels of math education since they can be deployed and graded at a large scale. A critical component of MCQs is the distractors, i.e., incorrect answers crafted to reflect student errors or misconceptions. Automatically generating them in math MCQs, e.g., with large language models, has been challenging. In this work, we propose a novel method to enhance the quality of generated distractors through overgenerate-and-rank, training a ranking model to predict how likely distractors are to be selected by real students. Experimental results on a real-world dataset and human evaluation with math teachers show that our ranking model increases alignment with human-authored distractors, although human-authored ones are still preferred over generated ones.


Math Multiple Choice Question Generation via Human-Large Language Model Collaboration

arXiv.org Artificial Intelligence

Multiple choice questions (MCQs) are a popular method for evaluating students' knowledge due to their efficiency in administration and grading. Crafting high-quality math MCQs is a labor-intensive process that requires educators to formulate precise stems and plausible distractors. Recent advances in large language models (LLMs) have sparked interest in automating MCQ creation, but challenges persist in ensuring mathematical accuracy and addressing student errors. This paper introduces a prototype tool designed to facilitate collaboration between LLMs and educators for streamlining the math MCQ generation process. We conduct a pilot study involving math educators to investigate how the tool can help them simplify the process of crafting high-quality math MCQs. We found that while LLMs can generate well-formulated question stems, their ability to generate distractors that capture common student errors and misconceptions is limited. Nevertheless, a human-AI collaboration has the potential to enhance the efficiency and effectiveness of MCQ generation.


Exploring Automated Distractor Generation for Math Multiple-choice Questions via Large Language Models

arXiv.org Artificial Intelligence

Multiple-choice questions (MCQs) are ubiquitous in almost all levels of education since they are easy to administer, grade, and are a reliable format in assessments and practices. One of the most important aspects of MCQs is the distractors, i.e., incorrect options that are designed to target common errors or misconceptions among real students. To date, the task of crafting high-quality distractors largely remains a labor and time-intensive process for teachers and learning content designers, which has limited scalability. In this work, we study the task of automated distractor generation in the domain of math MCQs and explore a wide variety of large language model (LLM)-based approaches, from in-context learning to fine-tuning. We conduct extensive experiments using a real-world math MCQ dataset and find that although LLMs can generate some mathematically valid distractors, they are less adept at anticipating common errors or misconceptions among real students.


Improving the Validity of Automatically Generated Feedback via Reinforcement Learning

arXiv.org Artificial Intelligence

Automatically generating feedback via large language models (LLMs) in intelligent tutoring systems and online learning platforms has the potential to improve the learning outcomes of many students. However, both feedback generation and evaluation are challenging: feedback content has to be valid especially in subjects like math, which requires models to understand the problem, the solution, and where the student's error lies. Feedback also has to be pedagogically valid to reflect effective tutoring strategies, such as explaining possible misconceptions and encouraging the student, among other desirable features. In this work, we address both problems of automatically generating and evaluating feedback while considering both correctness and alignment. First, we propose a rubric for evaluating math feedback and show that GPT-4 is able to effectively use it to annotate human-written and LLM-generated feedback. Second, we propose a framework for feedback generation that optimizes both correctness and alignment using reinforcement learning (RL). Specifically, we use GPT-4's annotations to create preferences over feedback pairs in an augmented dataset for training via direct preference optimization (DPO). We show that our methods significantly increase the correctness and alignment of generated feedback with Llama 2, an open-source LLM, qualitatively analyze our generation and evaluation systems using case studies, and outline several areas for future work.


Automated Distractor and Feedback Generation for Math Multiple-choice Questions via In-context Learning

arXiv.org Artificial Intelligence

Multiple-choice questions (MCQs) are ubiquitous in almost all levels of education since they are easy to administer, grade, and are a reliable form of assessment. An important aspect of MCQs is the distractors, i.e., incorrect options that are designed to target specific misconceptions or insufficient knowledge among students. To date, the task of crafting high-quality distractors has largely remained a labor-intensive process for teachers and learning content designers, which has limited scalability. In this work, we explore the task of automated distractor and corresponding feedback message generation in math MCQs using large language models. We establish a formulation of these two tasks and propose a simple, in-context learning-based solution. Moreover, we propose generative AI-based metrics for evaluating the quality of the feedback messages. We conduct extensive experiments on these tasks using a real-world MCQ dataset. Our findings suggest that there is a lot of room for improvement in automated distractor and feedback generation; based on these findings, we outline several directions for future work.