Goto

Collaborating Authors

 Singla, Sahil


Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation

arXiv.org Artificial Intelligence

Human feedback plays a critical role in learning and refining reward models for text-to-image generation, but the optimal form the feedback should take for learning an accurate reward function has not been conclusively established. This paper investigates the effectiveness of fine-grained feedback which captures nuanced distinctions in image quality and prompt-alignment, compared to traditional coarse-grained feedback (for example, thumbs up/down or ranking between a set of options). While fine-grained feedback holds promise, particularly for systems catering to diverse societal preferences, we show that demonstrating its superiority to coarse-grained feedback is not automatic. Through experiments on real and synthetic preference data, we surface the complexities of building effective models due to the interplay of model choice, feedback type, and the alignment between human judgment and computational interpretation. We identify key challenges in eliciting and utilizing fine-grained feedback, prompting a reassessment of its assumed benefits and practicality. Our findings -- e.g., that fine-grained feedback can lead to worse models for a fixed budget, in some settings; however, in controlled settings with known attributes, fine grained rewards can indeed be more helpful -- call for careful consideration of feedback attributes and potentially beckon novel modeling approaches to appropriately unlock the potential value of fine-grained feedback in-the-wild.


e-COP : Episodic Constrained Optimization of Policies

arXiv.org Artificial Intelligence

In this paper, we present the $\texttt{e-COP}$ algorithm, the first policy optimization algorithm for constrained Reinforcement Learning (RL) in episodic (finite horizon) settings. Such formulations are applicable when there are separate sets of optimization criteria and constraints on a system's behavior. We approach this problem by first establishing a policy difference lemma for the episodic setting, which provides the theoretical foundation for the algorithm. Then, we propose to combine a set of established and novel solution ideas to yield the $\texttt{e-COP}$ algorithm that is easy to implement and numerically stable, and provide a theoretical guarantee on optimality under certain scaling assumptions. Through extensive empirical analysis using benchmarks in the Safety Gym suite, we show that our algorithm has similar or better performance than SoTA (non-episodic) algorithms adapted for the episodic setting. The scalability of the algorithm opens the door to its application in safety-constrained Reinforcement Learning from Human Feedback for Large Language or Diffusion Models.


Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data

arXiv.org Artificial Intelligence

We present a simple and efficient method to leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images. While significant recent advances have resulted in improved techniques for damage assessment using aerial or satellite imagery, they still suffer from poor robustness to domains where manual labeled data is unavailable, directly impacting post-disaster humanitarian assistance in such under-resourced geographies. Our contribution towards improving domain robustness in this scenario is two-fold. Firstly, we leverage the text-guided mask-based image editing capabilities of generative models and build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains. Secondly, we propose a simple two-stage training approach to train robust models while using manual supervision from different source domains along with the generated synthetic target domain data. We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings, achieving significant improvements over a source-only baseline in each case.


Bandit Sequential Posted Pricing via Half-Concavity

arXiv.org Artificial Intelligence

Sequential posted pricing auctions are popular because of their simplicity in practice and their tractability in theory. A usual assumption in their study is that the Bayesian prior distributions of the buyers are known to the seller, while in reality these priors can only be accessed from historical data. To overcome this assumption, we study sequential posted pricing in the bandit learning model, where the seller interacts with $n$ buyers over $T$ rounds: In each round the seller posts $n$ prices for the $n$ buyers and the first buyer with a valuation higher than the price takes the item. The only feedback that the seller receives in each round is the revenue. Our main results obtain nearly-optimal regret bounds for single-item sequential posted pricing in the bandit learning model. In particular, we achieve an $\tilde{O}(\mathsf{poly}(n)\sqrt{T})$ regret for buyers with (Myerson's) regular distributions and an $\tilde{O}(\mathsf{poly}(n)T^{{2}/{3}})$ regret for buyers with general distributions, both of which are tight in the number of rounds $T$. Our result for regular distributions was previously not known even for the single-buyer setting and relies on a new half-concavity property of the revenue function in the value space. For $n$ sequential buyers, our technique is to run a generalized single-buyer algorithm for all the buyers and to carefully bound the regret from the sub-optimal pricing of the suffix buyers.


Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases

arXiv.org Artificial Intelligence

We present a simple but effective method to measure and mitigate model biases caused by reliance on spurious cues. Instead of requiring costly changes to one's data or model training, our method better utilizes the data one already has by sorting them. Specifically, we rank images within their classes based on spuriosity (the degree to which common spurious cues are present), proxied via deep neural features of an interpretable network. With spuriosity rankings, it is easy to identify minority subpopulations (i.e. low spuriosity images) and assess model bias as the gap in accuracy between high and low spuriosity images. One can even efficiently remove a model's bias at little cost to accuracy by finetuning its classification head on low spuriosity images, resulting in fairer treatment of samples regardless of spuriosity. We demonstrate our method on ImageNet, annotating $5000$ class-feature dependencies ($630$ of which we find to be spurious) and generating a dataset of $325k$ soft segmentations for these features along the way. Having computed spuriosity rankings via the identified spurious neural features, we assess biases for $89$ diverse models and find that class-wise biases are highly correlated across models. Our results suggest that model bias due to spurious feature reliance is influenced far more by what the model is trained on than how it is trained.


Improved techniques for deterministic l2 robustness

arXiv.org Artificial Intelligence

Training convolutional neural networks (CNNs) with a strict 1-Lipschitz constraint under the $l_{2}$ norm is useful for adversarial robustness, interpretable gradients and stable training. 1-Lipschitz CNNs are usually designed by enforcing each layer to have an orthogonal Jacobian matrix (for all inputs) to prevent the gradients from vanishing during backpropagation. However, their performance often significantly lags behind that of heuristic methods to enforce Lipschitz constraints where the resulting CNN is not \textit{provably} 1-Lipschitz. In this work, we reduce this gap by introducing (a) a procedure to certify robustness of 1-Lipschitz CNNs by replacing the last linear layer with a 1-hidden layer MLP that significantly improves their performance for both standard and provably robust accuracy, (b) a method to significantly reduce the training time per epoch for Skew Orthogonal Convolution (SOC) layers (>30\% reduction for deeper networks) and (c) a class of pooling layers using the mathematical property that the $l_{2}$ distance of an input to a manifold is 1-Lipschitz. Using these methods, we significantly advance the state-of-the-art for standard and provable robust accuracies on CIFAR-10 (gains of +1.79\% and +3.82\%) and similarly on CIFAR-100 (+3.78\% and +4.75\%) across all networks. Code is available at \url{https://github.com/singlasahil14/improved_l2_robustness}.


Perceptual Adversarial Robustness: Defense Against Unseen Threat Models

arXiv.org Machine Learning

A key challenge in adversarial robustness is the lack of a precise mathematical characterization of human perception, used in the very definition of adversarial attacks that are imperceptible to human eyes. Most current attacks and defenses try to avoid this issue by considering restrictive adversarial threat models such as those bounded by $L_2$ or $L_\infty$ distance, spatial perturbations, etc. However, models that are robust against any of these restrictive threat models are still fragile against other threat models. To resolve this issue, we propose adversarial training against the set of all imperceptible adversarial examples, approximated using deep neural networks. We call this threat model the neural perceptual threat model (NPTM); it includes adversarial examples with a bounded neural perceptual distance (a neural network-based approximation of the true perceptual distance) to natural images. Through an extensive perceptual study, we show that the neural perceptual distance correlates well with human judgements of perceptibility of adversarial examples, validating our threat model. Under the NPTM, we develop novel perceptual adversarial attacks and defenses. Because the NPTM is very broad, we find that Perceptual Adversarial Training (PAT) against a perceptual attack gives robustness against many other types of adversarial attacks. We test PAT on CIFAR-10 and ImageNet-100 against five diverse adversarial attacks. We find that PAT achieves state-of-the-art robustness against the union of these five attacks, more than doubling the accuracy over the next best model, without training against any of them. That is, PAT generalizes well to unforeseen perturbation types. This is vital in sensitive applications where a particular threat model cannot be assumed, and to the best of our knowledge, PAT is the first adversarial defense with this property.


Second-Order Provable Defenses against Adversarial Attacks

arXiv.org Machine Learning

A robustness certificate is the minimum distance of a given input to the decision boundary of the classifier (or its lower bound). For {\it any} input perturbations with a magnitude smaller than the certificate value, the classification output will provably remain unchanged. Exactly computing the robustness certificates for neural networks is difficult since it requires solving a non-convex optimization. In this paper, we provide computationally-efficient robustness certificates for neural networks with differentiable activation functions in two steps. First, we show that if the eigenvalues of the Hessian of the network are bounded, we can compute a robustness certificate in the $l_2$ norm efficiently using convex optimization. Second, we derive a computationally-efficient differentiable upper bound on the curvature of a deep network. We also use the curvature bound as a regularization term during the training of the network to boost its certified robustness. Putting these results together leads to our proposed {\bf C}urvature-based {\bf R}obustness {\bf C}ertificate (CRC) and {\bf C}urvature-based {\bf R}obust {\bf T}raining (CRT). Our numerical results show that CRT leads to significantly higher certified robust accuracy compared to interval-bound propagation (IBP) based training. We achieve certified robust accuracy 69.79\%, 57.78\% and 53.19\% while IBP-based methods achieve 44.96\%, 44.74\% and 44.66\% on 2,3 and 4 layer networks respectively on the MNIST-dataset.


Certifiably Robust Interpretation in Deep Learning

arXiv.org Machine Learning

Although gradient-based saliency maps are popular methods for deep learning interpretation, they can be extremely vulnerable to adversarial attacks. This is worrisome especially due to the lack of practical defenses for protecting deep learning interpretations against attacks. In this paper, we address this problem and provide two defense methods for deep learning interpretation. First, we show that a sparsified version of the popular SmoothGrad method, which computes the average saliency maps over random perturbations of the input, is certifiably robust against adversarial perturbations. We obtain this result by extending recent bounds for certifiably robust smooth classifiers to the interpretation setting. Experiments on ImageNet samples validate our theory. Second, we introduce an adversarial training approach to further robustify deep learning interpretation by adding a regularization term to penalize the inconsistency of saliency maps between normal and crafted adversarial samples. Empirically, we observe that this approach not only improves the robustness of deep learning interpretation to adversarial attacks, but it also improves the quality of the gradient-based saliency maps.


Robustness Certificates Against Adversarial Examples for ReLU Networks

arXiv.org Machine Learning

While neural networks have achieved high performance in different learning tasks, their accuracy drops significantly in the presence of small adversarial perturbations to inputs. Defenses based on regularization and adversarial training are often followed by new attacks to defeat them. In this paper, we propose attack-agnostic robustness certificates for a multi-label classification problem using a deep ReLU network. Although computing the exact distance of a given input sample to the classification decision boundary requires solving a non-convex optimization, we characterize two lower bounds for such distances, namely the simplex certificate and the decision boundary certificate. These robustness certificates leverage the piece-wise linear structure of ReLU networks and use the fact that in a polyhedron around a given sample, the prediction function is linear. In particular, the proposed simplex certificate has a closed-form, is differentiable and is an order of magnitude faster to compute than the existing methods even for deep networks. In addition to theoretical bounds, we provide numerical results for our certificates over MNIST and compare them with some existing upper bounds.