Goto

Collaborating Authors

 Singh, Avi


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Many-Shot In-Context Learning

arXiv.org Artificial Intelligence

Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, without any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to fine-tuning. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.


Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

arXiv.org Artificial Intelligence

Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often limited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar feedback, for example, on math problems where one can verify correctness. To do so, we investigate a simple self-training method based on expectation-maximization, which we call ReST$^{EM}$, where we (1) generate samples from the model and filter them using binary feedback, (2) fine-tune the model on these samples, and (3) repeat this process a few times. Testing on advanced MATH reasoning and APPS coding benchmarks using PaLM-2 models, we find that ReST$^{EM}$ scales favorably with model size and significantly surpasses fine-tuning only on human data. Overall, our findings suggest self-training with feedback can substantially reduce dependence on human-generated data.


Improving Large Language Model Fine-tuning for Solving Math Problems

arXiv.org Artificial Intelligence

Despite their success in many natural language tasks, solving math problems remains a significant challenge for large language models (LLMs). A large gap exists between LLMs' pass-at-one and pass-at-N performance in solving math problems, suggesting LLMs might be close to finding correct solutions, motivating our exploration of fine-tuning methods to unlock LLMs' performance. Using the challenging MATH dataset, we investigate three fine-tuning strategies: (1) solution fine-tuning, where we fine-tune to generate a detailed solution for a given math problem; (2) solution-cluster re-ranking, where the LLM is fine-tuned as a solution verifier/evaluator to choose among generated candidate solution clusters; (3) multi-task sequential fine-tuning, which integrates both solution generation and evaluation tasks together efficiently to enhance the LLM performance. With these methods, we present a thorough empirical study on a series of PaLM 2 models and find: (1) The quality and style of the step-by-step solutions used for fine-tuning can make a significant impact on the model performance; (2) While solution re-ranking and majority voting are both effective for improving the model performance when used separately, they can also be used together for an even greater performance boost; (3) Multi-task fine-tuning that sequentially separates the solution generation and evaluation tasks can offer improved performance compared with the solution fine-tuning baseline. Guided by these insights, we design a fine-tuning recipe that yields approximately 58.8% accuracy on the MATH dataset with fine-tuned PaLM 2-L models, an 11.2% accuracy improvement over the few-shot performance of pre-trained PaLM 2-L model with majority voting.


Robotic Table Tennis: A Case Study into a High Speed Learning System

arXiv.org Artificial Intelligence

We present a deep-dive into a real-world robotic learning system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description, including numerous design decisions that are typically not widely disseminated, with a collection of studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, sensitivity to policy hyper-parameters, and choice of action space. A video demonstrating the components of the system and details of experimental results can be found at https://youtu.be/uFcnWjB42I0.


i-Sim2Real: Reinforcement Learning of Robotic Policies in Tight Human-Robot Interaction Loops

arXiv.org Artificial Intelligence

Sim-to-real transfer is a powerful paradigm for robotic reinforcement learning. The ability to train policies in simulation enables safe exploration and large-scale data collection quickly at low cost. However, prior works in sim-to-real transfer of robotic policies typically do not involve any human-robot interaction because accurately simulating human behavior is an open problem. In this work, our goal is to leverage the power of simulation to train robotic policies that are proficient at interacting with humans upon deployment. But there is a chicken and egg problem -- how to gather examples of a human interacting with a physical robot so as to model human behavior in simulation without already having a robot that is able to interact with a human? Our proposed method, Iterative-Sim-to-Real (i-S2R), attempts to address this. i-S2R bootstraps from a simple model of human behavior and alternates between training in simulation and deploying in the real world. In each iteration, both the human behavior model and the policy are refined. For all training we apply a new evolutionary search algorithm called Blackbox Gradient Sensing (BGS). We evaluate our method on a real world robotic table tennis setting, where the objective for the robot is to play cooperatively with a human player for as long as possible. Table tennis is a high-speed, dynamic task that requires the two players to react quickly to each other's moves, making for a challenging test bed for research on human-robot interaction. We present results on an industrial robotic arm that is able to cooperatively play table tennis with human players, achieving rallies of 22 successive hits on average and 150 at best. Further, for 80% of players, rally lengths are 70% to 175% longer compared to the sim-to-real plus fine-tuning (S2R+FT) baseline. For videos of our system in action, please see https://sites.google.com/view/is2r.


Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition

Neural Information Processing Systems

The design of a reward function often poses a major practical challenge to real-world applications of reinforcement learning. Approaches such as inverse reinforcement learning attempt to overcome this challenge, but require expert demonstrations, which can be difficult or expensive to obtain in practice. We propose inverse event-based control, which generalizes inverse reinforcement learning methods to cases where full demonstrations are not needed, such as when only samples of desired goal states are available. Our method is grounded in an alternative perspective on control and reinforcement learning, where an agent's goal is to maximize the probability that one or more events will happen at some point in the future, rather than maximizing cumulative rewards. We demonstrate the effectiveness of our methods on continuous control tasks, with a focus on high-dimensional observations like images where rewards are hard or even impossible to specify.


End-to-End Robotic Reinforcement Learning without Reward Engineering

arXiv.org Machine Learning

The combination of deep neural network models and reinforcement learning algorithms can make it possible to learn policies for robotic behaviors that directly read in raw sensory inputs, such as camera images, effectively subsuming both estimation and control into one model. However, real-world applications of reinforcement learning must specify the goal of the task by means of a manually programmed reward function, which in practice requires either designing the very same perception pipeline that end-to-end reinforcement learning promises to avoid, or else instrumenting the environment with additional sensors to determine if the task has been performed successfully. In this paper, we propose an approach for removing the need for manual engineering of reward specifications by enabling a robot to learn from a modest number of examples of successful outcomes, followed by actively solicited queries, where the robot shows the user a state and asks for a label to determine whether that state represents successful completion of the task. While requesting labels for every single state would amount to asking the user to manually provide the reward signal, our method requires labels for only a tiny fraction of the states seen during training, making it an efficient and practical approach for learning skills without manually engineered rewards. We evaluate our method on real-world robotic manipulation tasks where the observations consist of images viewed by the robot's camera. In our experiments, our method effectively learns to arrange objects, place books, and drape cloth, directly from images and without any manually specified reward functions, and with only 1-4 hours of interaction with the real world.


Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition

Neural Information Processing Systems

The design of a reward function often poses a major practical challenge to real-world applications of reinforcement learning. Approaches such as inverse reinforcement learning attempt to overcome this challenge, but require expert demonstrations, which can be difficult or expensive to obtain in practice. We propose inverse event-based control, which generalizes inverse reinforcement learning methods to cases where full demonstrations are not needed, such as when only samples of desired goal states are available. Our method is grounded in an alternative perspective on control and reinforcement learning, where an agent's goal is to maximize the probability that one or more events will happen at some point in the future, rather than maximizing cumulative rewards. We demonstrate the effectiveness of our methods on continuous control tasks, with a focus on high-dimensional observations like images where rewards are hard or even impossible to specify.


Few-Shot Goal Inference for Visuomotor Learning and Planning

arXiv.org Artificial Intelligence

Reinforcement learning and planning methods require an objective or reward function that encodes the desired behavior. Yet, in practice, there is a wide range of scenarios where an objective is difficult to provide programmatically, such as tasks with visual observations involving unknown object positions or deformable objects. In these cases, prior methods use engineered problem-specific solutions, e.g., by instrumenting the environment with additional sensors to measure a proxy for the objective. Such solutions require a significant engineering effort on a per-task basis, and make it impractical for robots to continuously learn complex skills outside of laboratory settings. We aim to find a more general and scalable solution for specifying goals for robot learning in unconstrained environments. To that end, we formulate the few-shot objective learning problem, where the goal is to learn a task objective from only a few example images of successful end states for that task. We propose a simple solution to this problem: meta-learn a classifier that can recognize new goals from a few examples. We show how this approach can be used with both model-free reinforcement learning and visual model-based planning and show results in three domains: rope manipulation from images in simulation, visual navigation in a simulated 3D environment, and object arrangement into user-specified configurations on a real robot.