Singh, Aditya
CP-NCBF: A Conformal Prediction-based Approach to Synthesize Verified Neural Control Barrier Functions
Tayal, Manan, Singh, Aditya, Jagtap, Pushpak, Kolathaya, Shishir
Control Barrier Functions (CBFs) are a practical approach for designing safety-critical controllers, but constructing them for arbitrary nonlinear dynamical systems remains a challenge. Recent efforts have explored learning-based methods, such as neural CBFs (NCBFs), to address this issue. However, ensuring the validity of NCBFs is difficult due to potential learning errors. In this letter, we propose a novel framework that leverages split-conformal prediction to generate formally verified neural CBFs with probabilistic guarantees based on a user-defined error rate, referred to as CP-NCBF. Unlike existing methods that impose Lipschitz constraints on neural CBF-leading to scalability limitations and overly conservative safe sets--our approach is sample-efficient, scalable, and results in less restrictive safety regions. We validate our framework through case studies on obstacle avoidance in autonomous driving and geo-fencing of aerial vehicles, demonstrating its ability to generate larger and less conservative safe sets compared to conventional techniques.
A Physics-Informed Machine Learning Framework for Safe and Optimal Control of Autonomous Systems
Tayal, Manan, Singh, Aditya, Kolathaya, Shishir, Bansal, Somil
As autonomous systems become more ubiquitous in daily life, ensuring high performance with guaranteed safety is crucial. However, safety and performance could be competing objectives, which makes their co-optimization difficult. Learning-based methods, such as Constrained Reinforcement Learning (CRL), achieve strong performance but lack formal safety guarantees due to safety being enforced as soft constraints, limiting their use in safety-critical settings. Conversely, formal methods such as Hamilton-Jacobi (HJ) Reachability Analysis and Control Barrier Functions (CBFs) provide rigorous safety assurances but often neglect performance, resulting in overly conservative controllers. To bridge this gap, we formulate the co-optimization of safety and performance as a state-constrained optimal control problem, where performance objectives are encoded via a cost function and safety requirements are imposed as state constraints. We demonstrate that the resultant value function satisfies a Hamilton-Jacobi-Bellman (HJB) equation, which we approximate efficiently using a novel physics-informed machine learning framework. In addition, we introduce a conformal prediction-based verification strategy to quantify the learning errors, recovering a high-confidence safety value function, along with a probabilistic error bound on performance degradation. Through several case studies, we demonstrate the efficacy of the proposed framework in enabling scalable learning of safe and performant controllers for complex, high-dimensional autonomous systems.
Simple Unsupervised Knowledge Distillation With Space Similarity
Singh, Aditya, Wang, Haohan
As per recent studies, Self-supervised learning (SSL) does not readily extend to smaller architectures. One direction to mitigate this shortcoming while simultaneously training a smaller network without labels is to adopt unsupervised knowledge distillation (UKD). Existing UKD approaches handcraft preservation worthy inter/intra sample relationships between the teacher and its student. However, this may overlook/ignore other key relationships present in the mapping of a teacher. In this paper, instead of heuristically constructing preservation worthy relationships between samples, we directly motivate the student to model the teacher's embedding manifold. If the mapped manifold is similar, all inter/intra sample relationships are indirectly conserved. We first demonstrate that prior methods cannot preserve teacher's latent manifold due to their sole reliance on $L_2$ normalised embedding features. Subsequently, we propose a simple objective to capture the lost information due to normalisation. Our proposed loss component, termed \textbf{space similarity}, motivates each dimension of a student's feature space to be similar to the corresponding dimension of its teacher. We perform extensive experiments demonstrating strong performance of our proposed approach on various benchmarks.
AnoGAN for Tabular Data: A Novel Approach to Anomaly Detection
Singh, Aditya, Reddy, Pavan
Anomaly detection, a critical facet in data analysis, involves identifying patterns that deviate from expected behavior. This research addresses the complexities inherent in anomaly detection, exploring challenges and adapting to sophisticated malicious activities. With applications spanning cybersecurity, healthcare, finance, and surveillance, anomalies often signify critical information or potential threats. Inspired by the success of Anomaly Generative Adversarial Network (AnoGAN) in image domains, our research extends its principles to tabular data. Our contributions include adapting AnoGAN's principles to a new domain and promising advancements in detecting previously undetectable anomalies. This paper delves into the multifaceted nature of anomaly detection, considering the dynamic evolution of normal behavior, context-dependent anomaly definitions, and data-related challenges like noise and imbalances.
Imposing Exact Safety Specifications in Neural Reachable Tubes
Singh, Aditya, Feng, Zeyuan, Bansal, Somil
Hamilton-Jacobi (HJ) reachability analysis is a verification tool that provides safety and performance guarantees for autonomous systems. It is widely adopted because of its ability to handle nonlinear dynamical systems with bounded adversarial disturbances and constraints on states and inputs. However, it involves solving a PDE to compute a safety value function, whose computational and memory complexity scales exponentially with the state dimension, making its direct usage in large-scale systems intractable. Recently, a learning-based approach called DeepReach, has been proposed to approximate high-dimensional reachable tubes using neural networks. While DeepReach has been shown to be effective, the accuracy of the learned solution decreases with the increase in system complexity. One of the reasons for this degradation is the inexact imposition of safety constraints during the learning process, which corresponds to the PDE's boundary conditions. Specifically, DeepReach imposes boundary conditions as soft constraints in the loss function, which leaves room for error during the value function learning. Moreover, one needs to carefully adjust the relative contributions from the imposition of boundary conditions and the imposition of the PDE in the loss function. This, in turn, induces errors in the overall learned solution. In this work, we propose a variant of DeepReach that exactly imposes safety constraints during the learning process by restructuring the overall value function as a weighted sum of the boundary condition and neural network output. This eliminates the need for a boundary loss during training, thus bypassing the need for loss adjustment. We demonstrate the efficacy of the proposed approach in significantly improving the accuracy of learned solutions for challenging high-dimensional reachability tasks, such as rocket-landing and multivehicle collision-avoidance problems.
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Liu, Haoyang, Singh, Aditya, Li, Yijiang, Wang, Haohan
Enhancing the robustness of deep learning models, particularly in the realm of vision transformers (ViTs), is crucial for their real-world deployment. In this work, we provide a finetuning approach to enhance the robustness of vision transformers inspired by the concept of nullspace from linear algebra. Our investigation centers on whether a vision transformer can exhibit resilience to input variations akin to the nullspace property in linear mappings, implying that perturbations sampled from this nullspace do not influence the model's output when added to the input. Firstly, we show that for many pretrained ViTs, a non-trivial nullspace exists due to the presence of the patch embedding layer. Secondly, as nullspace is a concept associated with linear algebra, we demonstrate that it is possible to synthesize approximate nullspace elements for the non-linear blocks of ViTs employing an optimisation strategy. Finally, we propose a fine-tuning strategy for ViTs wherein we augment the training data with synthesized approximate nullspace noise. After finetuning, we find that the model demonstrates robustness to adversarial and natural image perbutations alike.
X-lifecycle Learning for Cloud Incident Management using LLMs
Goel, Drishti, Husain, Fiza, Singh, Aditya, Ghosh, Supriyo, Parayil, Anjaly, Bansal, Chetan, Zhang, Xuchao, Rajmohan, Saravan
Incident management for large cloud services is a complex and tedious process and requires significant amount of manual efforts from on-call engineers (OCEs). OCEs typically leverage data from different stages of the software development lifecycle [SDLC] (e.g., codes, configuration, monitor data, service properties, service dependencies, trouble-shooting documents, etc.) to generate insights for detection, root causing and mitigating of incidents. Recent advancements in large language models [LLMs] (e.g., ChatGPT, GPT-4, Gemini) created opportunities to automatically generate contextual recommendations to the OCEs assisting them to quickly identify and mitigate critical issues. However, existing research typically takes a silo-ed view for solving a certain task in incident management by leveraging data from a single stage of SDLC. In this paper, we demonstrate that augmenting additional contextual data from different stages of SDLC improves the performance of two critically important and practically challenging tasks: (1) automatically generating root cause recommendations for dependency failure related incidents, and (2) identifying ontology of service monitors used for automatically detecting incidents. By leveraging 353 incident and 260 monitor dataset from Microsoft, we demonstrate that augmenting contextual information from different stages of the SDLC improves the performance over State-of-The-Art methods.
A bi-objective $\epsilon$-constrained framework for quality-cost optimization in language model ensembles
Singla, Aditi, Singh, Aditya, Kukreja, Kanishk
We propose an ensembling framework that uses diverse open-sourced Large Language Models (LLMs) to achieve high response quality while maintaining cost efficiency. We formulate a bi-objective optimization problem to represent the quality-cost tradeoff and then introduce an additional budget constraint that reduces the problem to a straightforward 0/1 knapsack problem. We empirically demonstrate that our framework outperforms the existing ensembling approaches in response quality while significantly reducing costs. Large Language Models (LLMs) excel in traditional NLP problems (OpenAI (2023)), but their high inference costs hinder deployment in high-throughput applications (Anonymous (2023a)). Meanwhile, opensource models are less performant than their closed-source counterparts (Beeching et al. (2023)), but they typically offer lower inference costs (Kaplan et al. (2020)).
Chanakya: Learning Runtime Decisions for Adaptive Real-Time Perception
Ghosh, Anurag, Balloli, Vaibhav, Nambi, Akshay, Singh, Aditya, Ganu, Tanuja
Real-time perception requires planned resource utilization. Computational planning in real-time perception is governed by two considerations -- accuracy and latency. There exist run-time decisions (e.g. choice of input resolution) that induce tradeoffs affecting performance on a given hardware, arising from intrinsic (content, e.g. scene clutter) and extrinsic (system, e.g. resource contention) characteristics. Earlier runtime execution frameworks employed rule-based decision algorithms and operated with a fixed algorithm latency budget to balance these concerns, which is sub-optimal and inflexible. We propose Chanakya, a learned approximate execution framework that naturally derives from the streaming perception paradigm, to automatically learn decisions induced by these tradeoffs instead. Chanakya is trained via novel rewards balancing accuracy and latency implicitly, without approximating either objectives. Chanakya simultaneously considers intrinsic and extrinsic context, and predicts decisions in a flexible manner. Chanakya, designed with low overhead in mind, outperforms state-of-the-art static and dynamic execution policies on public datasets on both server GPUs and edge devices.
Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends Among Healthcare Facilities
Appe, Anudeep, Poluparthi, Bhanu, Kasivajjula, Lakshmi, Mv, Udai, Bagadi, Sobha, Modi, Punya, Singh, Aditya, Gunupudi, Hemanth
The necessity of data driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a Healthcare Provider Facility or a Hospital (from here on termed as Facility) Market Share is of key importance. This pilot study aims at developing a data driven Machine Learning - Regression framework which aids strategists in formulating key decisions to improve the Facilitys Market Share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study; and the data spanning across 60 key Facilities in Washington State and about 3 years of historical data is considered. In the current analysis Market Share is termed as the ratio of facility encounters to the total encounters among the group of potential competitor facilities. The current study proposes a novel two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. The proposed method to identify pool of competitors in current analysis, develops Directed Acyclic Graphs (DAGs), feature level word vectors and evaluates the key connected components at facility level. This technique is robust since its data driven which minimizes the bias from empirical techniques. Post identifying the set of competitors among facilities, developed Regression model to predict the Market share. For relative quantification of features at a facility level, incorporated SHAP a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share.