Simhi, Adi
Trust Me, I'm Wrong: High-Certainty Hallucinations in LLMs
Simhi, Adi, Itzhak, Itay, Barez, Fazl, Stanovsky, Gabriel, Belinkov, Yonatan
Large Language Models (LLMs) often generate outputs that lack grounding in real-world facts, a phenomenon known as hallucinations. Prior research has associated hallucinations with model uncertainty, leveraging this relationship for hallucination detection and mitigation. In this paper, we challenge the underlying assumption that all hallucinations are associated with uncertainty. Using knowledge detection and uncertainty measurement methods, Figure 1: Do high-certainty hallucinations exist? An we demonstrate that models can hallucinate illustrative categorization of hallucinations based on a with high certainty even when they have the model's knowledge and certainty. Highlighted is the correct knowledge. We further show that highcertainty phenomenon of high-certainty hallucinations (purple) hallucinations are consistent across - where models confidently produce incorrect outputs, models and datasets, distinctive enough to be even when they have the correct knowledge. While other singled out, and challenge existing mitigation types of hallucinations can potentially be explained by methods. Our findings reveal an overlooked aspect the model not knowing, being mistaken, or uncertain, of hallucinations, emphasizing the need to high-certainty hallucinations are harder to rationalize, understand their origins and improve mitigation making their existence particularly intriguing.
Distinguishing Ignorance from Error in LLM Hallucinations
Simhi, Adi, Herzig, Jonathan, Szpektor, Idan, Belinkov, Yonatan
Large language models (LLMs) are susceptible to hallucinations-outputs that are ungrounded, factually incorrect, or inconsistent with prior generations. We focus on close-book Question Answering (CBQA), where previous work has not fully addressed the distinction between two possible kinds of hallucinations, namely, whether the model (1) does not hold the correct answer in its parameters or (2) answers incorrectly despite having the required knowledge. We argue that distinguishing these cases is crucial for detecting and mitigating hallucinations. Specifically, case (2) may be mitigated by intervening in the model's internal computation, as the knowledge resides within the model's parameters. In contrast, in case (1) there is no parametric knowledge to leverage for mitigation, so it should be addressed by resorting to an external knowledge source or abstaining. To help distinguish between the two cases, we introduce Wrong Answer despite having Correct Knowledge (WACK), an approach for constructing model-specific datasets for the second hallucination type. Our probing experiments indicate that the two kinds of hallucinations are represented differently in the model's inner states. Next, we show that datasets constructed using WACK exhibit variations across models, demonstrating that even when models share knowledge of certain facts, they still vary in the specific examples that lead to hallucinations. Finally, we show that training a probe on our WACK datasets leads to better hallucination detection of case (2) hallucinations than using the common generic one-size-fits-all datasets. The code is available at https://github.com/technion-cs-nlp/hallucination-mitigation .
Interpreting Embedding Spaces by Conceptualization
Simhi, Adi, Markovitch, Shaul
One of the main methods for computational interpretation of a text is mapping it into a vector in some embedding space. Such vectors can then be used for a variety of textual processing tasks. Recently, most embedding spaces are a product of training large language models (LLMs). One major drawback of this type of representation is their incomprehensibility to humans. Understanding the embedding space is crucial for several important needs, including the need to debug the embedding method and compare it to alternatives, and the need to detect biases hidden in the model. In this paper, we present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space. We present an algorithm for deriving a conceptual space with dynamic on-demand granularity. We devise a new evaluation method, using either human rater or LLM-based raters, to show that the conceptualized vectors indeed represent the semantics of the original latent ones. We show the use of our method for various tasks, including comparing the semantics of alternative models and tracing the layers of the LLM. The code is available online https://github.com/adiSimhi/Interpreting-Embedding-Spaces-by-Conceptualization.
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Workshop, BigScience, :, null, Scao, Teven Le, Fan, Angela, Akiki, Christopher, Pavlick, Ellie, Ilić, Suzana, Hesslow, Daniel, Castagné, Roman, Luccioni, Alexandra Sasha, Yvon, François, Gallé, Matthias, Tow, Jonathan, Rush, Alexander M., Biderman, Stella, Webson, Albert, Ammanamanchi, Pawan Sasanka, Wang, Thomas, Sagot, Benoît, Muennighoff, Niklas, del Moral, Albert Villanova, Ruwase, Olatunji, Bawden, Rachel, Bekman, Stas, McMillan-Major, Angelina, Beltagy, Iz, Nguyen, Huu, Saulnier, Lucile, Tan, Samson, Suarez, Pedro Ortiz, Sanh, Victor, Laurençon, Hugo, Jernite, Yacine, Launay, Julien, Mitchell, Margaret, Raffel, Colin, Gokaslan, Aaron, Simhi, Adi, Soroa, Aitor, Aji, Alham Fikri, Alfassy, Amit, Rogers, Anna, Nitzav, Ariel Kreisberg, Xu, Canwen, Mou, Chenghao, Emezue, Chris, Klamm, Christopher, Leong, Colin, van Strien, Daniel, Adelani, David Ifeoluwa, Radev, Dragomir, Ponferrada, Eduardo González, Levkovizh, Efrat, Kim, Ethan, Natan, Eyal Bar, De Toni, Francesco, Dupont, Gérard, Kruszewski, Germán, Pistilli, Giada, Elsahar, Hady, Benyamina, Hamza, Tran, Hieu, Yu, Ian, Abdulmumin, Idris, Johnson, Isaac, Gonzalez-Dios, Itziar, de la Rosa, Javier, Chim, Jenny, Dodge, Jesse, Zhu, Jian, Chang, Jonathan, Frohberg, Jörg, Tobing, Joseph, Bhattacharjee, Joydeep, Almubarak, Khalid, Chen, Kimbo, Lo, Kyle, Von Werra, Leandro, Weber, Leon, Phan, Long, allal, Loubna Ben, Tanguy, Ludovic, Dey, Manan, Muñoz, Manuel Romero, Masoud, Maraim, Grandury, María, Šaško, Mario, Huang, Max, Coavoux, Maximin, Singh, Mayank, Jiang, Mike Tian-Jian, Vu, Minh Chien, Jauhar, Mohammad A., Ghaleb, Mustafa, Subramani, Nishant, Kassner, Nora, Khamis, Nurulaqilla, Nguyen, Olivier, Espejel, Omar, de Gibert, Ona, Villegas, Paulo, Henderson, Peter, Colombo, Pierre, Amuok, Priscilla, Lhoest, Quentin, Harliman, Rheza, Bommasani, Rishi, López, Roberto Luis, Ribeiro, Rui, Osei, Salomey, Pyysalo, Sampo, Nagel, Sebastian, Bose, Shamik, Muhammad, Shamsuddeen Hassan, Sharma, Shanya, Longpre, Shayne, Nikpoor, Somaieh, Silberberg, Stanislav, Pai, Suhas, Zink, Sydney, Torrent, Tiago Timponi, Schick, Timo, Thrush, Tristan, Danchev, Valentin, Nikoulina, Vassilina, Laippala, Veronika, Lepercq, Violette, Prabhu, Vrinda, Alyafeai, Zaid, Talat, Zeerak, Raja, Arun, Heinzerling, Benjamin, Si, Chenglei, Taşar, Davut Emre, Salesky, Elizabeth, Mielke, Sabrina J., Lee, Wilson Y., Sharma, Abheesht, Santilli, Andrea, Chaffin, Antoine, Stiegler, Arnaud, Datta, Debajyoti, Szczechla, Eliza, Chhablani, Gunjan, Wang, Han, Pandey, Harshit, Strobelt, Hendrik, Fries, Jason Alan, Rozen, Jos, Gao, Leo, Sutawika, Lintang, Bari, M Saiful, Al-shaibani, Maged S., Manica, Matteo, Nayak, Nihal, Teehan, Ryan, Albanie, Samuel, Shen, Sheng, Ben-David, Srulik, Bach, Stephen H., Kim, Taewoon, Bers, Tali, Fevry, Thibault, Neeraj, Trishala, Thakker, Urmish, Raunak, Vikas, Tang, Xiangru, Yong, Zheng-Xin, Sun, Zhiqing, Brody, Shaked, Uri, Yallow, Tojarieh, Hadar, Roberts, Adam, Chung, Hyung Won, Tae, Jaesung, Phang, Jason, Press, Ofir, Li, Conglong, Narayanan, Deepak, Bourfoune, Hatim, Casper, Jared, Rasley, Jeff, Ryabinin, Max, Mishra, Mayank, Zhang, Minjia, Shoeybi, Mohammad, Peyrounette, Myriam, Patry, Nicolas, Tazi, Nouamane, Sanseviero, Omar, von Platen, Patrick, Cornette, Pierre, Lavallée, Pierre François, Lacroix, Rémi, Rajbhandari, Samyam, Gandhi, Sanchit, Smith, Shaden, Requena, Stéphane, Patil, Suraj, Dettmers, Tim, Baruwa, Ahmed, Singh, Amanpreet, Cheveleva, Anastasia, Ligozat, Anne-Laure, Subramonian, Arjun, Névéol, Aurélie, Lovering, Charles, Garrette, Dan, Tunuguntla, Deepak, Reiter, Ehud, Taktasheva, Ekaterina, Voloshina, Ekaterina, Bogdanov, Eli, Winata, Genta Indra, Schoelkopf, Hailey, Kalo, Jan-Christoph, Novikova, Jekaterina, Forde, Jessica Zosa, Clive, Jordan, Kasai, Jungo, Kawamura, Ken, Hazan, Liam, Carpuat, Marine, Clinciu, Miruna, Kim, Najoung, Cheng, Newton, Serikov, Oleg, Antverg, Omer, van der Wal, Oskar, Zhang, Rui, Zhang, Ruochen, Gehrmann, Sebastian, Mirkin, Shachar, Pais, Shani, Shavrina, Tatiana, Scialom, Thomas, Yun, Tian, Limisiewicz, Tomasz, Rieser, Verena, Protasov, Vitaly, Mikhailov, Vladislav, Pruksachatkun, Yada, Belinkov, Yonatan, Bamberger, Zachary, Kasner, Zdeněk, Rueda, Alice, Pestana, Amanda, Feizpour, Amir, Khan, Ammar, Faranak, Amy, Santos, Ana, Hevia, Anthony, Unldreaj, Antigona, Aghagol, Arash, Abdollahi, Arezoo, Tammour, Aycha, HajiHosseini, Azadeh, Behroozi, Bahareh, Ajibade, Benjamin, Saxena, Bharat, Ferrandis, Carlos Muñoz, McDuff, Daniel, Contractor, Danish, Lansky, David, David, Davis, Kiela, Douwe, Nguyen, Duong A., Tan, Edward, Baylor, Emi, Ozoani, Ezinwanne, Mirza, Fatima, Ononiwu, Frankline, Rezanejad, Habib, Jones, Hessie, Bhattacharya, Indrani, Solaiman, Irene, Sedenko, Irina, Nejadgholi, Isar, Passmore, Jesse, Seltzer, Josh, Sanz, Julio Bonis, Dutra, Livia, Samagaio, Mairon, Elbadri, Maraim, Mieskes, Margot, Gerchick, Marissa, Akinlolu, Martha, McKenna, Michael, Qiu, Mike, Ghauri, Muhammed, Burynok, Mykola, Abrar, Nafis, Rajani, Nazneen, Elkott, Nour, Fahmy, Nour, Samuel, Olanrewaju, An, Ran, Kromann, Rasmus, Hao, Ryan, Alizadeh, Samira, Shubber, Sarmad, Wang, Silas, Roy, Sourav, Viguier, Sylvain, Le, Thanh, Oyebade, Tobi, Le, Trieu, Yang, Yoyo, Nguyen, Zach, Kashyap, Abhinav Ramesh, Palasciano, Alfredo, Callahan, Alison, Shukla, Anima, Miranda-Escalada, Antonio, Singh, Ayush, Beilharz, Benjamin, Wang, Bo, Brito, Caio, Zhou, Chenxi, Jain, Chirag, Xu, Chuxin, Fourrier, Clémentine, Periñán, Daniel León, Molano, Daniel, Yu, Dian, Manjavacas, Enrique, Barth, Fabio, Fuhrimann, Florian, Altay, Gabriel, Bayrak, Giyaseddin, Burns, Gully, Vrabec, Helena U., Bello, Imane, Dash, Ishani, Kang, Jihyun, Giorgi, John, Golde, Jonas, Posada, Jose David, Sivaraman, Karthik Rangasai, Bulchandani, Lokesh, Liu, Lu, Shinzato, Luisa, de Bykhovetz, Madeleine Hahn, Takeuchi, Maiko, Pàmies, Marc, Castillo, Maria A, Nezhurina, Marianna, Sänger, Mario, Samwald, Matthias, Cullan, Michael, Weinberg, Michael, De Wolf, Michiel, Mihaljcic, Mina, Liu, Minna, Freidank, Moritz, Kang, Myungsun, Seelam, Natasha, Dahlberg, Nathan, Broad, Nicholas Michio, Muellner, Nikolaus, Fung, Pascale, Haller, Patrick, Chandrasekhar, Ramya, Eisenberg, Renata, Martin, Robert, Canalli, Rodrigo, Su, Rosaline, Su, Ruisi, Cahyawijaya, Samuel, Garda, Samuele, Deshmukh, Shlok S, Mishra, Shubhanshu, Kiblawi, Sid, Ott, Simon, Sang-aroonsiri, Sinee, Kumar, Srishti, Schweter, Stefan, Bharati, Sushil, Laud, Tanmay, Gigant, Théo, Kainuma, Tomoya, Kusa, Wojciech, Labrak, Yanis, Bajaj, Yash Shailesh, Venkatraman, Yash, Xu, Yifan, Xu, Yingxin, Xu, Yu, Tan, Zhe, Xie, Zhongli, Ye, Zifan, Bras, Mathilde, Belkada, Younes, Wolf, Thomas
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.