Goto

Collaborating Authors

 Silva, Andrew


Shared Autonomy for Proximal Teaching

arXiv.org Artificial Intelligence

Motor skill learning often requires experienced professionals who can provide personalized instruction. Unfortunately, the availability of high-quality training can be limited for specialized tasks, such as high performance racing. Several recent works have leveraged AI-assistance to improve instruction of tasks ranging from rehabilitation to surgical robot tele-operation. However, these works often make simplifying assumptions on the student learning process, and fail to model how a teacher's assistance interacts with different individuals' abilities when determining optimal teaching strategies. Inspired by the idea of scaffolding from educational psychology, we leverage shared autonomy, a framework for combining user inputs with robot autonomy, to aid with curriculum design. Our key insight is that the way a student's behavior improves in the presence of assistance from an autonomous agent can highlight which sub-skills might be most ``learnable'' for the student, or within their Zone of Proximal Development. We use this to design Z-COACH, a method for using shared autonomy to provide personalized instruction targeting interpretable task sub-skills. In a user study (n=50), where we teach high performance racing in a simulated environment of the Thunderhill Raceway Park with the CARLA Autonomous Driving simulator, we show that Z-COACH helps identify which skills each student should first practice, leading to an overall improvement in driving time, behavior, and smoothness. Our work shows that increasingly available semi-autonomous capabilities (e.g. in vehicles, robots) can not only assist human users, but also help *teach* them.


Dreaming to Assist: Learning to Align with Human Objectives for Shared Control in High-Speed Racing

arXiv.org Artificial Intelligence

Tight coordination is required for effective human-robot teams in domains involving fast dynamics and tactical decisions, such as multi-car racing. In such settings, robot teammates must react to cues of a human teammate's tactical objective to assist in a way that is consistent with the objective (e.g., navigating left or right around an obstacle). To address this challenge, we present Dream2Assist, a framework that combines a rich world model able to infer human objectives and value functions, and an assistive agent that provides appropriate expert assistance to a given human teammate. Our approach builds on a recurrent state space model to explicitly infer human intents, enabling the assistive agent to select actions that align with the human and enabling a fluid teaming interaction. We demonstrate our approach in a high-speed racing domain with a population of synthetic human drivers pursuing mutually exclusive objectives, such as "stay-behind" and "overtake". We show that the combined human-robot team, when blending its actions with those of the human, outperforms the synthetic humans alone as well as several baseline assistance strategies, and that intent-conditioning enables adherence to human preferences during task execution, leading to improved performance while satisfying the human's objective.


Interpretable Reinforcement Learning for Robotics and Continuous Control

arXiv.org Artificial Intelligence

Interpretability in machine learning is critical for the safe deployment of learned policies across legally-regulated and safety-critical domains. While gradient-based approaches in reinforcement learning have achieved tremendous success in learning policies for continuous control problems such as robotics and autonomous driving, the lack of interpretability is a fundamental barrier to adoption. We propose Interpretable Continuous Control Trees (ICCTs), a tree-based model that can be optimized via modern, gradient-based, reinforcement learning approaches to produce high-performing, interpretable policies. The key to our approach is a procedure for allowing direct optimization in a sparse decision-tree-like representation. We validate ICCTs against baselines across six domains, showing that ICCTs are capable of learning policies that parity or outperform baselines by up to 33% in autonomous driving scenarios while achieving a 300x-600x reduction in the number of parameters against deep learning baselines. We prove that ICCTs can serve as universal function approximators and display analytically that ICCTs can be verified in linear time. Furthermore, we deploy ICCTs in two realistic driving domains, based on interstate Highway-94 and 280 in the US. Finally, we verify ICCT's utility with end-users and find that ICCTs are rated easier to simulate, quicker to validate, and more interpretable than neural networks.


Learning Interpretable, High-Performing Policies for Autonomous Driving

arXiv.org Artificial Intelligence

Gradient-based approaches in reinforcement learning (RL) have achieved tremendous success in learning policies for autonomous vehicles. While the performance of these approaches warrants real-world adoption, these policies lack interpretability, limiting deployability in the safety-critical and legally-regulated domain of autonomous driving (AD). AD requires interpretable and verifiable control policies that maintain high performance. We propose Interpretable Continuous Control Trees (ICCTs), a tree-based model that can be optimized via modern, gradient-based, RL approaches to produce high-performing, interpretable policies. The key to our approach is a procedure for allowing direct optimization in a sparse decision-tree-like representation. We validate ICCTs against baselines across six domains, showing that ICCTs are capable of learning interpretable policy representations that parity or outperform baselines by up to 33% in AD scenarios while achieving a 300x-600x reduction in the number of policy parameters against deep learning baselines. Furthermore, we demonstrate the interpretability and utility of our ICCTs through a 14-car physical robot demonstration.


Multimodal Punctuation Prediction with Contextual Dropout

arXiv.org Artificial Intelligence

Automatic speech recognition (ASR) is widely used in consumer electronics. ASR greatly improves the utility and accessibility of technology, but usually the output is only word sequences without punctuation. This can result in ambiguity in inferring user-intent. We first present a transformer-based approach for punctuation prediction that achieves 8% improvement on the IWSLT 2012 TED Task, beating the previous state of the art [1]. We next describe our multimodal model that learns from both text and audio, which achieves 8% improvement over the text-only algorithm on an internal dataset for which we have both the audio and transcriptions. Finally, we present an approach to learning a model using contextual dropout that allows us to handle variable amounts of future context at test time.


Interpretable Policy Specification and Synthesis through Natural Language and RL

arXiv.org Artificial Intelligence

Policy specification is a process by which a human can initialize a robot's behaviour and, in turn, warm-start policy optimization via Reinforcement Learning (RL). While policy specification/design is inherently a collaborative process, modern methods based on Learning from Demonstration or Deep RL lack the model interpretability and accessibility to be classified as such. Current state-of-the-art methods for policy specification rely on black-box models, which are an insufficient means of collaboration for non-expert users: These models provide no means of inspecting policies learnt by the agent and are not focused on creating a usable modality for teaching robot behaviour. In this paper, we propose a novel machine learning framework that enables humans to 1) specify, through natural language, interpretable policies in the form of easy-to-understand decision trees, 2) leverage these policies to warm-start reinforcement learning and 3) outperform baselines that lack our natural language initialization mechanism. We train our approach by collecting a first-of-its-kind corpus mapping free-form natural language policy descriptions to decision tree-based policies. We show that our novel framework translates natural language to decision trees with a 96% and 97% accuracy on a held-out corpus across two domains, respectively. Finally, we validate that policies initialized with natural language commands are able to significantly outperform relevant baselines (p < 0.001) that do not benefit from our natural language-based warm-start technique.


Personalized Apprenticeship Learning from Heterogeneous Decision-Makers

arXiv.org Artificial Intelligence

Human domain experts solve difficult planning problems by drawing on years of experience. In many cases, computing a solution to such problems is computationally intractable or requires encoding heuristics from human domain experts. As codifying this knowledge leaves much to be desired, we aim to infer their strategies through observation. The challenge lies in that humans exhibit heterogeneity in their latent decision-making criteria. To overcome this, we propose a personalized apprenticeship learning framework that automatically infers a representation of all human task demonstrators by extracting a human-specific embedding. Our framework is built on a propositional architecture that allows for distilling an interpretable representation of each human demonstrator's decision-making.


Safe Coordination of Human-Robot Firefighting Teams

arXiv.org Artificial Intelligence

Wildfires are destructive and inflict massive, irreversible harm to victims' lives and natural resources. Researchers have proposed commissioning unmanned aerial vehicles (UAVs) to provide firefighters with real-time tracking information; yet, these UAVs are not able to reason about a fire's track, including current location, measurement, and uncertainty, as well as propagation. We propose a model-predictive, probabilistically safe distributed control algorithm for human-robot collaboration in wildfire fighting. The proposed algorithm overcomes the limitations of prior work by explicitly estimating the latent fire propagation dynamics to enable intelligent, time-extended coordination of the UAVs in support of on-the-ground human firefighters. We derive a novel, analytical bound that enables UAVs to distribute their resources and provides a probabilistic guarantee of the humans' safety while preserving the UAVs' ability to cover an entire fire.


ProLoNets: Neural-encoding Human Experts' Domain Knowledge to Warm Start Reinforcement Learning

arXiv.org Machine Learning

Deep reinforcement learning has seen great success across a breadth of tasks such as in game playing and robotic manipulation. However, the modern practice of attempting to learn tabula rasa disregards the logical structure of many domains and the wealth of readily-available human domain experts' knowledge that could help ``warm start'' the learning process. Further, learning from demonstration techniques are not yet sufficient to infer this knowledge through sampling-based mechanisms in large state and action spaces, or require immense amounts of data. We present a new reinforcement learning architecture that can encode expert knowledge, in the form of propositional logic, directly into a neural, tree-like structure of fuzzy propositions that are amenable to gradient descent. We show that our novel architecture is able to outperform reinforcement and imitation learning techniques across an array of canonical challenge problems for artificial intelligence.