Goto

Collaborating Authors

 Siddharthan, Advaith


CSS: Contrastive Semantic Similarity for Uncertainty Quantification of LLMs

arXiv.org Artificial Intelligence

Despite the impressive capability of large language models (LLMs), knowing when to trust their generations remains an open challenge. The recent literature on uncertainty quantification of natural language generation (NLG) utilises a conventional natural language inference (NLI) classifier to measure the semantic dispersion of LLMs responses. These studies employ logits of NLI classifier for semantic clustering to estimate uncertainty. However, logits represent the probability of the predicted class and barely contain feature information for potential clustering. Alternatively, CLIP (Contrastive Language-Image Pre-training) performs impressively in extracting image-text pair features and measuring their similarity. To extend its usability, we propose Contrastive Semantic Similarity, the CLIP-based feature extraction module to obtain similarity features for measuring uncertainty for text pairs. We apply this method to selective NLG, which detects and rejects unreliable generations for better trustworthiness of LLMs. We conduct extensive experiments with three LLMs on several benchmark question-answering datasets with comprehensive evaluation metrics. Results show that our proposed method performs better in estimating reliable responses of LLMs than comparable baselines. Results show that our proposed method performs better in estimating reliable responses of LLMs than comparable baselines. The code are available at \url{https://github.com/AoShuang92/css_uq_llms}.


Textual Summarisation of Large Sets: Towards a General Approach

arXiv.org Artificial Intelligence

Shneiderman's mantra, "Overview first, zoom and filter, then details-on-demand", highlights the importance of giving readers a high-level overview before offering detail. We apply this idea to generate an overview of sets of objects, hypothesising that an overview will be beneficial to readers who want to understand the set. Previously we investigated the domain of consumer products, focusing on descriptions of products (such as TVs) which are intended to help readers decide which specific products to buy. Now we aim to generalise the techniques we have developed, by looking at a very different type of domain, namely bibliographical references in academic papers.


Two Sides of Miscalibration: Identifying Over and Under-Confidence Prediction for Network Calibration

arXiv.org Artificial Intelligence

Proper confidence calibration of deep neural networks is essential for reliable predictions in safety-critical tasks. Miscalibration can lead to model over-confidence and/or under-confidence; i.e., the model's confidence in its prediction can be greater or less than the model's accuracy. Recent studies have highlighted the over-confidence issue by introducing calibration techniques and demonstrated success on various tasks. However, miscalibration through under-confidence has not yet to receive much attention. In this paper, we address the necessity of paying attention to the under-confidence issue. We first introduce a novel metric, a miscalibration score, to identify the overall and class-wise calibration status, including being over or under-confident. Our proposed metric reveals the pitfalls of existing calibration techniques, where they often overly calibrate the model and worsen under-confident predictions. Then we utilize the class-wise miscalibration score as a proxy to design a calibration technique that can tackle both over and under-confidence. We report extensive experiments that show our proposed methods substantially outperforming existing calibration techniques. We also validate our proposed calibration technique on an automatic failure detection task with a risk-coverage curve, reporting that our methods improve failure detection as well as trustworthiness of the model. The code are available at \url{https://github.com/AoShuang92/miscalibration_TS}.


Empirical Optimal Risk to Quantify Model Trustworthiness for Failure Detection

arXiv.org Artificial Intelligence

Failure detection (FD) in AI systems is a crucial safeguard for the deployment for safety-critical tasks. The common evaluation method of FD performance is the Risk-coverage (RC) curve, which reveals the trade-off between the data coverage rate and the performance on accepted data. One common way to quantify the RC curve by calculating the area under the RC curve. However, this metric does not inform on how suited any method is for FD, or what the optimal coverage rate should be. As FD aims to achieve higher performance with fewer data discarded, evaluating with partial coverage excluding the most uncertain samples is more intuitive and meaningful than full coverage. In addition, there is an optimal point in the coverage where the model could achieve ideal performance theoretically. We propose the Excess Area Under the Optimal RC Curve (E-AUoptRC), with the area in coverage from the optimal point to the full coverage. Further, the model performance at this optimal point can represent both model learning ability and calibration. We propose it as the Trust Index (TI), a complementary evaluation metric to the overall model accuracy. We report extensive experiments on three benchmark image datasets with ten variants of transformer and CNN models. Our results show that our proposed methods can better reflect the model trustworthiness than existing evaluation metrics. We further observe that the model with high overall accuracy does not always yield the high TI, which indicates the necessity of the proposed Trust Index as a complementary metric to the model overall accuracy. The code are available at \url{https://github.com/AoShuang92/optimal_risk}.


Summarising Historical Text in Modern Languages

arXiv.org Artificial Intelligence

We introduce the task of historical text summarisation, where documents in historical forms of a language are summarised in the corresponding modern language. This is a fundamentally important routine to historians and digital humanities researchers but has never been automated. We compile a high-quality gold-standard text summarisation dataset, which consists of historical German and Chinese news from hundreds of years ago summarised in modern German or Chinese. Based on cross-lingual transfer learning techniques, we propose a summarisation model that can be trained even with no cross-lingual (historical to modern) parallel data, and further benchmark it against state-of-the-art algorithms. We report automatic and human evaluations that distinguish the historic to modern language summarisation task from standard cross-lingual summarisation (i.e., modern to modern language), highlight the distinctness and value of our dataset, and demonstrate that our transfer learning approach outperforms standard cross-lingual benchmarks on this task.