Goto

Collaborating Authors

 Shu, Feng


Multi-modal Iterative and Deep Fusion Frameworks for Enhanced Passive DOA Sensing via a Green Massive H2AD MIMO Receiver

arXiv.org Artificial Intelligence

Most existing DOA estimation methods assume ideal source incident angles with minimal noise. Moreover, directly using pre-estimated angles to calculate weighted coefficients can lead to performance loss. Thus, a green multi-modal (MM) fusion DOA framework is proposed to realize a more practical, low-cost and high time-efficiency DOA estimation for a H$^2$AD array. Firstly, two more efficient clustering methods, global maximum cos\_similarity clustering (GMaxCS) and global minimum distance clustering (GMinD), are presented to infer more precise true solutions from the candidate solution sets. Based on this, an iteration weighted fusion (IWF)-based method is introduced to iteratively update weighted fusion coefficients and the clustering center of the true solution classes by using the estimated values. Particularly, the coarse DOA calculated by fully digital (FD) subarray, serves as the initial cluster center. The above process yields two methods called MM-IWF-GMaxCS and MM-IWF-GMinD. To further provide a higher-accuracy DOA estimation, a fusion network (fusionNet) is proposed to aggregate the inferred two-part true angles and thus generates two effective approaches called MM-fusionNet-GMaxCS and MM-fusionNet-GMinD. The simulation outcomes show the proposed four approaches can achieve the ideal DOA performance and the CRLB. Meanwhile, proposed MM-fusionNet-GMaxCS and MM-fusionNet-GMinD exhibit superior DOA performance compared to MM-IWF-GMaxCS and MM-IWF-GMinD, especially in extremely-low SNR range.


Content Caching-Assisted Vehicular Edge Computing Using Multi-Agent Graph Attention Reinforcement Learning

arXiv.org Artificial Intelligence

In order to avoid repeated task offloading and realize the reuse of popular task computing results, we construct a novel content caching-assisted vehicular edge computing (VEC) framework. In the face of irregular network topology and unknown environmental dynamics, we further propose a multi-agent graph attention reinforcement learning (MGARL) based edge caching scheme, which utilizes the graph attention convolution kernel to integrate the neighboring nodes' features of each agent and further enhance the cooperation among agents. Our simulation results show that our proposed scheme is capable of improving the utilization of caching resources while reducing the long-term task computing latency compared to the baselines.


Co-learning-aided Multi-modal-deep-learning Framework of Passive DOA Estimators for a Heterogeneous Hybrid Massive MIMO Receiver

arXiv.org Artificial Intelligence

Due to its excellent performance in rate and resolution, fully-digital (FD) massive multiple-input multiple-output (MIMO) antenna arrays has been widely applied in data transmission and direction of arrival (DOA) measurements, etc. But it confronts with two main challenges: high computational complexity and circuit cost. The two problems may be addressed well by hybrid analog-digital (HAD) structure. But there exists the problem of phase ambiguity for HAD, which leads to its low-efficiency or high-latency. Does exist there such a MIMO structure of owning low-cost, low-complexity and high time efficiency at the same time. To satisfy the three properties, a novel heterogeneous hybrid MIMO receiver structure of integrating FD and heterogeneous HAD ($\rm{H}^2$AD-FD) is proposed and corresponding multi-modal (MD)-learning framework is developed. The framework includes three major stages: 1) generate the candidate sets via root multiple signal classification (Root-MUSIC) or deep learning (DL); 2) infer the class of true solutions from candidate sets using machine learning (ML) methods; 3) fuse the two-part true solutions to achieve a better DOA estimation. The above process form two methods named MD-Root-MUSIC and MDDL. To improve DOA estimation accuracy and reduce the clustering complexity, a co-learning-aided MD framework is proposed to form two enhanced methods named CoMDDL and CoMD-RootMUSIC. Moreover, the Cramer-Rao lower bound (CRLB) for the proposed $\rm{H}^2$AD-FD structure is also derived. Experimental results demonstrate that our proposed four methods could approach the CRLB for signal-to-noise ratio (SNR) > 0 dB and the proposed CoMDDL and MDDL perform better than CoMD-RootMUSIC and MD-RootMUSIC, particularly in the extremely low SNR region.


Multi-stream Transmission for Directional Modulation Network via Distributed Multi-UAV-aided Multi-active-IRS

arXiv.org Artificial Intelligence

Active intelligent reflecting surface (IRS) is a revolutionary technique for the future 6G networks. The conventional far-field single-IRS-aided directional modulation(DM) networks have only one (no direct path) or two (existing direct path) degrees of freedom (DoFs). This means that there are only one or two streams transmitted simultaneously from base station to user and will seriously limit its rate gain achieved by IRS. How to create multiple DoFs more than two for DM? In this paper, single large-scale IRS is divided to multiple small IRSs and a novel multi-IRS-aided multi-stream DM network is proposed to achieve a point-to-point multi-stream transmission by creating $K$ ($\geq3$) DoFs, where multiple small IRSs are placed distributively via multiple unmanned aerial vehicles (UAVs). The null-space projection, zero-forcing (ZF) and phase alignment are adopted to design the transmit beamforming vector, receive beamforming vector and phase shift matrix (PSM), respectively, called NSP-ZF-PA. Here, $K$ PSMs and their corresponding beamforming vectors are independently optimized. The weighted minimum mean-square error (WMMSE) algorithm is involved in alternating iteration for the optimization variables by introducing the power constraint on IRS, named WMMSE-PC, where the majorization-minimization (MM) algorithm is used to solve the total PSM. To achieve a lower computational complexity, a maximum trace method, called Max-TR-SVD, is proposed by optimize the PSM of all IRSs. Numerical simulation results has shown that the proposed NSP-ZF-PA performs much better than Max-TR-SVD in terms of rate. In particular, the rate of NSP-ZF-PA with sixteen small IRSs is about five times that of NSP-ZF-PA with combining all small IRSs as a single large IRS. Thus, a dramatic rate enhancement may be achieved by multiple distributed IRSs.


Gradient Sparsification for Efficient Wireless Federated Learning with Differential Privacy

arXiv.org Artificial Intelligence

Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other. However, it suffers the leakage of private information from uploading models. In addition, as the model size grows, the training latency increases due to limited transmission bandwidth and the model performance degrades while using differential privacy (DP) protection. In this paper, we propose a gradient sparsification empowered FL framework over wireless channels, in order to improve training efficiency without sacrificing convergence performance. Specifically, we first design a random sparsification algorithm to retain a fraction of the gradient elements in each client's local training, thereby mitigating the performance degradation induced by DP and and reducing the number of transmission parameters over wireless channels. Then, we analyze the convergence bound of the proposed algorithm, by modeling a non-convex FL problem. Next, we formulate a time-sequential stochastic optimization problem for minimizing the developed convergence bound, under the constraints of transmit power, the average transmitting delay, as well as the client's DP requirement. Utilizing the Lyapunov drift-plus-penalty framework, we develop an analytical solution to the optimization problem. Extensive experiments have been implemented on three real life datasets to demonstrate the effectiveness of our proposed algorithm. We show that our proposed algorithms can fully exploit the interworking between communication and computation to outperform the baselines, i.e., random scheduling, round robin and delay-minimization algorithms.


Over-the-Air Federated Averaging with Limited Power and Privacy Budgets

arXiv.org Artificial Intelligence

To jointly overcome the communication bottleneck and privacy leakage of wireless federated learning (FL), this paper studies a differentially private over-the-air federated averaging (DP-OTA-FedAvg) system with a limited sum power budget. With DP-OTA-FedAvg, the gradients are aligned by an alignment coefficient and aggregated over the air, and channel noise is employed to protect privacy. We aim to improve the learning performance by jointly designing the device scheduling, alignment coefficient, and the number of aggregation rounds of federated averaging (FedAvg) subject to sum power and privacy constraints. We first present the privacy analysis based on differential privacy (DP) to quantify the impact of the alignment coefficient on privacy preservation in each communication round. Furthermore, to study how the device scheduling, alignment coefficient, and the number of the global aggregation affect the learning process, we conduct the convergence analysis of DP-OTA-FedAvg in the cases of convex and non-convex loss functions. Based on these analytical results, we formulate an optimization problem to minimize the optimality gap of the DP-OTA-FedAvg subject to limited sum power and privacy budgets. The problem is solved by decoupling it into two sub-problems. Given the number of communication rounds, we conclude the relationship between the number of scheduled devices and the alignment coefficient, which offers a set of potential optimal solution pairs of device scheduling and the alignment coefficient. Thanks to the reduced search space, the optimal solution can be efficiently obtained. The effectiveness of the proposed policy is validated through simulations.


Design of Two-Level Incentive Mechanisms for Hierarchical Federated Learning

arXiv.org Artificial Intelligence

Hierarchical Federated Learning (HFL) is a distributed machine learning paradigm tailored for multi-tiered computation architectures, which supports massive access of devices' models simultaneously. To enable efficient HFL, it is crucial to design suitable incentive mechanisms to ensure that devices actively participate in local training. However, there are few studies on incentive mechanism design for HFL. In this paper, we design two-level incentive mechanisms for the HFL with a two-tiered computing structure to encourage the participation of entities in each tier in the HFL training. In the lower-level game, we propose a coalition formation game to joint optimize the edge association and bandwidth allocation problem, and obtain efficient coalition partitions by the proposed preference rule, which can be proven to be stable by exact potential game. In the upper-level game, we design the Stackelberg game algorithm, which not only determines the optimal number of edge aggregations for edge servers to maximize their utility, but also optimize the unit reward provided for the edge aggregation performance to ensure the interests of cloud servers. Furthermore, numerical results indicate that the proposed algorithms can achieve better performance than the benchmark schemes.


Privacy-Preserving Joint Edge Association and Power Optimization for the Internet of Vehicles via Federated Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Proactive edge association is capable of improving wireless connectivity at the cost of increased handover (HO) frequency and energy consumption, while relying on a large amount of private information sharing required for decision making. In order to improve the connectivity-cost trade-off without privacy leakage, we investigate the privacy-preserving joint edge association and power allocation (JEAPA) problem in the face of the environmental uncertainty and the infeasibility of individual learning. Upon modelling the problem by a decentralized partially observable Markov Decision Process (Dec-POMDP), it is solved by federated multi-agent reinforcement learning (FMARL) through only sharing encrypted training data for federatively learning the policy sought. Our simulation results show that the proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.