Shi, Yuxuan
Learnable Residual-based Latent Denoising in Semantic Communication
Xu, Mingkai, Wu, Yongpeng, Shi, Yuxuan, Xia, Xiang-Gen, Zhang, Wenjun, Zhang, Ping
A latent denoising semantic communication (SemCom) framework is proposed for robust image transmission over noisy channels. By incorporating a learnable latent denoiser into the receiver, the received signals are preprocessed to effectively remove the channel noise and recover the semantic information, thereby enhancing the quality of the decoded images. Specifically, a latent denoising mapping is established by an iterative residual learning approach to improve the denoising efficiency while ensuring stable performance. Moreover, channel signal-to-noise ratio (SNR) is utilized to estimate and predict the latent similarity score (SS) for conditional denoising, where the number of denoising steps is adapted based on the predicted SS sequence, further reducing the communication latency. Finally, simulations demonstrate that the proposed framework can effectively and efficiently remove the channel noise at various levels and reconstruct visual-appealing images.
WirelessGPT: A Generative Pre-trained Multi-task Learning Framework for Wireless Communication
Yang, Tingting, Zhang, Ping, Zheng, Mengfan, Shi, Yuxuan, Jing, Liwen, Huang, Jianbo, Li, Nan
Abstract--This paper introduces WirelessGPT, a pioneering foundation model specifically designed for multi-task learning in wireless communication and sensing. In fact, this task-agnostic design adapts WirelessGPT seamlessly to a wide range of downstream tasks, using a unified representation with minimal fine-tuning. By unifying communication and sensing functionalities, WirelessGPT addresses the limitations of task-specific models, offering a scalable and efficient solution for integrated sensing and communication (ISAC). With an initial parameter size of around 80 million, WirelessGPT demonstrates significant improvements over conventional methods and smaller AI models, reducing reliance on large-scale labeled data. As the first foundation model capable of supporting diverse tasks across different domains, WirelessGPT establishes a new benchmark, paving the way for future advancements in multi-task wireless systems.
Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation
Yang, Yuchen, Shi, Yingdong, Wang, Cheems, Zhen, Xiantong, Shi, Yuxuan, Xu, Jun
Fine-tuning pretrained large models to downstream tasks is an important problem, which however suffers from huge memory overhead due to large-scale parameters. This work strives to reduce memory overhead in fine-tuning from perspectives of activation function and layer normalization. To this end, we propose the Approximate Backpropagation (Approx-BP) theory, which provides the theoretical feasibility of decoupling the forward and backward passes. We apply our Approx-BP theory to backpropagation training and derive memory-efficient alternatives of GELU and SiLU activation functions, which use derivative functions of ReLUs in the backward pass while keeping their forward pass unchanged. In addition, we introduce a Memory-Sharing Backpropagation strategy, which enables the activation memory to be shared by two adjacent layers, thereby removing activation memory usage redundancy. Our method neither induces extra computation nor reduces training efficiency. We conduct extensive experiments with pretrained vision and language models, and the results demonstrate that our proposal can reduce up to $\sim$$30\%$ of the peak memory usage. Our code is released at https://github.com/yyyyychen/LowMemoryBP.
Robust Image Semantic Coding with Learnable CSI Fusion Masking over MIMO Fading Channels
Xie, Bingyan, Wu, Yongpeng, Shi, Yuxuan, Zhang, Wenjun, Cui, Shuguang, Debbah, Merouane
Though achieving marvelous progress in various scenarios, existing semantic communication frameworks mainly consider single-input single-output Gaussian channels or Rayleigh fading channels, neglecting the widely-used multiple-input multiple-output (MIMO) channels, which hinders the application into practical systems. One common solution to combat MIMO fading is to utilize feedback MIMO channel state information (CSI). In this paper, we incorporate MIMO CSI into system designs from a new perspective and propose the learnable CSI fusion semantic communication (LCFSC) framework, where CSI is treated as side information by the semantic extractor to enhance the semantic coding. To avoid feature fusion due to abrupt combination of CSI with features, we present a non-invasive CSI fusion multi-head attention module inside the Swin Transformer. With the learned attention masking map determined by both source and channel states, more robust attention distribution could be generated. Furthermore, the percentage of mask elements could be flexibly adjusted by the learnable mask ratio, which is produced based on the conditional variational interference in an unsupervised manner. In this way, CSI-aware semantic coding is achieved through learnable CSI fusion masking. Experiment results testify the superiority of LCFSC over traditional schemes and state-of-the-art Swin Transformer-based semantic communication frameworks in MIMO fading channels.
Communication-Efficient Framework for Distributed Image Semantic Wireless Transmission
Xie, Bingyan, Wu, Yongpeng, Shi, Yuxuan, Ng, Derrick Wing Kwan, Zhang, Wenjun
Multi-node communication, which refers to the interaction among multiple devices, has attracted lots of attention in many Internet-of-Things (IoT) scenarios. However, its huge amounts of data flows and inflexibility for task extension have triggered the urgent requirement of communication-efficient distributed data transmission frameworks. In this paper, inspired by the great superiorities on bandwidth reduction and task adaptation of semantic communications, we propose a federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices. Federated learning enables the design of independent semantic communication link of each user while further improves the semantic extraction and task performance through global aggregation. Each link in FLSC is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator for coarse-to-fine semantic extraction and meaning translation according to specific tasks. In order to extend the FLSC into more realistic conditions, we design a channel state information-based multiple-input multiple-output transmission module to combat channel fading and noise. Simulation results show that the coarse semantic information can deal with a range of image-level tasks. Moreover, especially in low signal-to-noise ratio and channel bandwidth ratio regimes, FLSC evidently outperforms the traditional scheme, e.g. about 10 peak signal-to-noise ratio gain in the 3 dB channel condition.
Semi-Supervised Contrastive Learning for Remote Sensing: Identifying Ancient Urbanization in the South Central Andes
Xu, Jiachen, Guo, Junlin, Zimmer-Dauphinee, James, Liu, Quan, Shi, Yuxuan, Asad, Zuhayr, Wilkes, D. Mitchell, VanValkenburgh, Parker, Wernke, Steven A., Huo, Yuankai
Archaeology has long faced fundamental issues of sampling and scalar representation. Traditionally, the local-to-regional-scale views of settlement patterns are produced through systematic pedestrian surveys. Recently, systematic manual survey of satellite and aerial imagery has enabled continuous distributional views of archaeological phenomena at interregional scales. However, such 'brute force' manual imagery survey methods are both time- and labor-intensive, as well as prone to inter-observer differences in sensitivity and specificity. The development of self-supervised learning methods offers a scalable learning scheme for locating archaeological features using unlabeled satellite and historical aerial images. However, archaeological features are generally only visible in a very small proportion relative to the landscape, while the modern contrastive-supervised learning approach typically yields an inferior performance on highly imbalanced datasets. In this work, we propose a framework to address this long-tail problem. As opposed to the existing contrastive learning approaches that treat the labelled and unlabeled data separately, our proposed method reforms the learning paradigm under a semi-supervised setting in order to utilize the precious annotated data (<7% in our setting). Specifically, the highly unbalanced nature of the data is employed as the prior knowledge in order to form pseudo negative pairs by ranking the similarities between unannotated image patches and annotated anchor images. In this study, we used 95,358 unlabeled images and 5,830 labelled images in order to solve the issues associated with detecting ancient buildings from a long-tailed satellite image dataset. From the results, our semi-supervised contrastive learning model achieved a promising testing balanced accuracy of 79.0%, which is a 3.8% improvement as compared to other state-of-the-art approaches.
Hands-on Guidance for Distilling Object Detectors
Qin, Yangyang, Ling, Hefei, He, Zhenghai, Shi, Yuxuan, Wu, Lei
Knowledge distillation can lead to deploy-friendly networks against the plagued computational complexity problem, but previous methods neglect the feature hierarchy in detectors. Motivated by this, we propose a general framework for detection distillation. Our method, called Hands-on Guidance Distillation, distills the latent knowledge of all stage features for imposing more comprehensive supervision, and focuses on the essence simultaneously for promoting more intense knowledge absorption. Specifically, a series of novel mechanisms are designed elaborately, including correspondence establishment for consistency, hands-on imitation loss measure and re-weighted optimization from both micro and macro perspectives. We conduct extensive evaluations with different distillation configurations over VOC and COCO datasets, which show better performance on accuracy and speed trade-offs. Meanwhile, feasibility experiments on different structural networks further prove the robustness of our HGD.