Goto

Collaborating Authors

 Shi, Yuhui


Multi-Agent Coordination across Diverse Applications: A Survey

arXiv.org Artificial Intelligence

Multi-agent coordination studies the underlying mechanism enabling the trending spread of diverse multi-agent systems (MAS) and has received increasing attention, driven by the expansion of emerging applications and rapid AI advances. This survey outlines the current state of coordination research across applications through a unified understanding that answers four fundamental coordination questions: (1) what is coordination; (2) why coordination; (3) who to coordinate with; and (4) how to coordinate. Our purpose is to explore existing ideas and expertise in coordination and their connections across diverse applications, while identifying and highlighting emerging and promising research directions. First, general coordination problems that are essential to varied applications are identified and analyzed. Second, a number of MAS applications are surveyed, ranging from widely studied domains, e.g., search and rescue, warehouse automation and logistics, and transportation systems, to emerging fields including humanoid and anthropomorphic robots, satellite systems, and large language models (LLMs). Finally, open challenges about the scalability, heterogeneity, and learning mechanisms of MAS are analyzed and discussed. In particular, we identify the hybridization of hierarchical and decentralized coordination, human-MAS coordination, and LLM-based MAS as promising future directions.


Exploring Accuracy-Fairness Trade-off in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have made significant strides in the field of artificial intelligence, showcasing their ability to interact with humans and influence human cognition through information dissemination. However, recent studies have brought to light instances of bias inherent within these LLMs, presenting a critical issue that demands attention. In our research, we delve deeper into the intricate challenge of harmonising accuracy and fairness in the enhancement of LLMs. While improving accuracy can indeed enhance overall LLM performance, it often occurs at the expense of fairness. Overemphasising optimisation of one metric invariably leads to a significant degradation of the other. This underscores the necessity of taking into account multiple considerations during the design and optimisation phases of LLMs. Therefore, we advocate for reformulating the LLM training process as a multi-objective learning task. Our investigation reveals that multi-objective evolutionary learning (MOEL) methodologies offer promising avenues for tackling this challenge. Our MOEL framework enables the simultaneous optimisation of both accuracy and fairness metrics, resulting in a Pareto-optimal set of LLMs. In summary, our study sheds valuable lights on the delicate equilibrium between accuracy and fairness within LLMs, which is increasingly significant for their real-world applications. By harnessing MOEL, we present a promising pathway towards fairer and more efficacious AI technologies.


Evolutionary Trigger Detection and Lightweight Model Repair Based Backdoor Defense

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) have been widely used in many areas such as autonomous driving and face recognition. However, DNN model is fragile to backdoor attack. A backdoor in the DNN model can be activated by a poisoned input with trigger and leads to wrong prediction, which causes serious security issues in applications. It is challenging for current defenses to eliminate the backdoor effectively with limited computing resources, especially when the sizes and numbers of the triggers are variable as in the physical world. We propose an efficient backdoor defense based on evolutionary trigger detection and lightweight model repair. In the first phase of our method, CAM-focus Evolutionary Trigger Filter (CETF) is proposed for trigger detection. CETF is an effective sample-preprocessing based method with the evolutionary algorithm, and our experimental results show that CETF not only distinguishes the images with triggers accurately from the clean images, but also can be widely used in practice for its simplicity and stability in different backdoor attack situations. In the second phase of our method, we leverage several lightweight unlearning methods with the trigger detected by CETF for model repair, which also constructively demonstrate the underlying correlation of the backdoor with Batch Normalization layers. Source code will be published after accepted.


Automated Metaheuristic Algorithm Design with Autoregressive Learning

arXiv.org Artificial Intelligence

Automated design of metaheuristic algorithms offers an attractive avenue to reduce human effort and gain enhanced performance beyond human intuition. Current automated methods design algorithms within a fixed structure and operate from scratch. This poses a clear gap towards fully discovering potentials over the metaheuristic family and fertilizing from prior design experience. To bridge the gap, this paper proposes an autoregressive learning-based designer for automated design of metaheuristic algorithms. Our designer formulates metaheuristic algorithm design as a sequence generation task, and harnesses an autoregressive generative network to handle the task. This offers two advances. First, through autoregressive inference, the designer generates algorithms with diverse lengths and structures, enabling to fully discover potentials over the metaheuristic family. Second, prior design knowledge learned and accumulated in neurons of the designer can be retrieved for designing algorithms for future problems, paving the way to continual design of algorithms for open-ended problem-solving. Extensive experiments on numeral benchmarks and real-world problems reveal that the proposed designer generates algorithms that outperform all human-created baselines on 24 out of 25 test problems. The generated algorithms display various structures and behaviors, reasonably fitting for different problem-solving contexts. Code will be released after paper publication.


Brain Storm Optimization Based Swarm Learning for Diabetic Retinopathy Image Classification

arXiv.org Artificial Intelligence

The application of deep learning techniques to medical problems has garnered widespread research interest in recent years, such as applying convolutional neural networks to medical image classification tasks. However, data in the medical field is often highly private, preventing different hospitals from sharing data to train an accurate model. Federated learning, as a privacy-preserving machine learning architecture, has shown promising performance in balancing data privacy and model utility by keeping private data on the client's side and using a central server to coordinate a set of clients for model training through aggregating their uploaded model parameters. Yet, this architecture heavily relies on a trusted third-party server, which is challenging to achieve in real life. Swarm learning, as a specialized decentralized federated learning architecture that does not require a central server, utilizes blockchain technology to enable direct parameter exchanges between clients. However, the mining of blocks requires significant computational resources, limiting its scalability. To address this issue, this paper integrates the brain storm optimization algorithm into the swarm learning framework, named BSO-SL. This approach clusters similar clients into different groups based on their model distributions. Additionally, leveraging the architecture of BSO, clients are given the probability to engage in collaborative learning both within their cluster and with clients outside their cluster, preventing the model from converging to local optima. The proposed method has been validated on a real-world diabetic retinopathy image classification dataset, and the experimental results demonstrate the effectiveness of the proposed approach.


Ten Words Only Still Help: Improving Black-Box AI-Generated Text Detection via Proxy-Guided Efficient Re-Sampling

arXiv.org Artificial Intelligence

With the rapidly increasing application of large language models (LLMs), their abuse has caused many undesirable societal problems such as fake news, academic dishonesty, and information pollution. This makes AI-generated text (AIGT) detection of great importance. Among existing methods, white-box methods are generally superior to black-box methods in terms of performance and generalizability, but they require access to LLMs' internal states and are not applicable to black-box settings. In this paper, we propose to estimate word generation probabilities as pseudo white-box features via multiple re-sampling to help improve AIGT detection under the black-box setting. Specifically, we design POGER, a proxy-guided efficient re-sampling method, which selects a small subset of representative words (e.g., 10 words) for performing multiple re-sampling in black-box AIGT detection. Experiments on datasets containing texts from humans and seven LLMs show that POGER outperforms all baselines in macro F1 under black-box, partial white-box, and out-of-distribution settings and maintains lower re-sampling costs than its existing counterparts.


Benchmark for CEC 2024 Competition on Multiparty Multiobjective Optimization

arXiv.org Artificial Intelligence

The competition focuses on Multiparty Multiobjective Optimization Problems (MPMOPs), where multiple decision makers have conflicting objectives, as seen in applications like UAV path planning. Despite their importance, MPMOPs remain understudied in comparison to conventional multiobjective optimization. The competition aims to address this gap by encouraging researchers to explore tailored modeling approaches. The test suite comprises two parts: problems with common Pareto optimal solutions and Biparty Multiobjective UAV Path Planning (BPMO-UAVPP) problems with unknown solutions. Optimization algorithms for the first part are evaluated using Multiparty Inverted Generational Distance (MPIGD), and the second part is evaluated using Multiparty Hypervolume (MPHV) metrics. The average algorithm ranking across all problems serves as a performance benchmark.


Bad Actor, Good Advisor: Exploring the Role of Large Language Models in Fake News Detection

arXiv.org Artificial Intelligence

Detecting fake news requires both a delicate sense of diverse clues and a profound understanding of the real-world background, which remains challenging for detectors based on small language models (SLMs) due to their knowledge and capability limitations. Recent advances in large language models (LLMs) have shown remarkable performance in various tasks, but whether and how LLMs could help with fake news detection remains underexplored. In this paper, we investigate the potential of LLMs in fake news detection. First, we conduct an empirical study and find that a sophisticated LLM such as GPT 3.5 could generally expose fake news and provide desirable multi-perspective rationales but still underperforms the basic SLM, fine-tuned BERT. Our subsequent analysis attributes such a gap to the LLM's inability to select and integrate rationales properly to conclude. Based on these findings, we propose that current LLMs may not substitute fine-tuned SLMs in fake news detection but can be a good advisor for SLMs by providing multi-perspective instructive rationales. To instantiate this proposal, we design an adaptive rationale guidance network for fake news detection (ARG), in which SLMs selectively acquire insights on news analysis from the LLMs' rationales. We further derive a rationale-free version of ARG by distillation, namely ARG-D, which services cost-sensitive scenarios without querying LLMs. Experiments on two real-world datasets demonstrate that ARG and ARG-D outperform three types of baseline methods, including SLM-based, LLM-based, and combinations of small and large language models.


QwenGrasp: A Usage of Large Vision-Language Model for Target-Oriented Grasping

arXiv.org Artificial Intelligence

Target-oriented grasping in unstructured scenes with language control is essential for intelligent robot arm grasping. The ability for the robot arm to understand the human language and execute corresponding grasping actions is a pivotal challenge. In this paper, we propose a combination model called QwenGrasp which combines a large vision-language model with a 6-DoF grasp neural network. QwenGrasp is able to conduct a 6-DoF grasping task on the target object with textual language instruction. We design a complete experiment with six-dimension instructions to test the QwenGrasp when facing with different cases. The results show that QwenGrasp has a superior ability to comprehend the human intention. Even in the face of vague instructions with descriptive words or instructions with direction information, the target object can be grasped accurately. When QwenGrasp accepts the instruction which is not feasible or not relevant to the grasping task, our approach has the ability to suspend the task execution and provide a proper feedback to humans, improving the safety. In conclusion, with the great power of large vision-language model, QwenGrasp can be applied in the open language environment to conduct the target-oriented grasping task with freely input instructions.


AutoOptLib: Tailoring Metaheuristic Optimizers via Automated Algorithm Design

arXiv.org Artificial Intelligence

Metaheuristics are prominent gradient-free optimizers for solving hard problems that do not meet the rigorous mathematical assumptions of analytical solvers. The canonical manual optimizer design could be laborious, untraceable and error-prone, let alone human experts are not always available. This arises increasing interest and demand in automating the optimizer design process. In response, this paper proposes AutoOptLib, the first platform for accessible automated design of metaheuristic optimizers. AutoOptLib leverages computing resources to conceive, build up, and verify the design choices of the optimizers. It requires much less labor resources and expertise than manual design, democratizing satisfactory metaheuristic optimizers to a much broader range of researchers and practitioners. Furthermore, by fully exploring the design choices with computing resources, AutoOptLib has the potential to surpass human experience, subsequently gaining enhanced performance compared with human problem-solving. To realize the automated design, AutoOptLib provides 1) a rich library of metaheuristic components for continuous, discrete, and permutation problems; 2) a flexible algorithm representation for evolving diverse algorithm structures; 3) different design objectives and techniques for different optimization scenarios; and 4) a graphic user interface for accessibility and practicability. AutoOptLib is fully written in Matlab/Octave; its source code and documentation are available at https://github.com/qz89/AutoOpt and https://AutoOpt.readthedocs.io/, respectively.