Goto

Collaborating Authors

 Shi, Xiaoshuang


TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention

arXiv.org Artificial Intelligence

Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.


ELU-GCN: Effectively Label-Utilizing Graph Convolutional Network

arXiv.org Artificial Intelligence

The message-passing mechanism of graph convolutional networks (i.e., GCNs) enables label information to be propagated to a broader range of neighbors, thereby increasing the utilization of labels. However, the label information is not always effectively utilized in the traditional GCN framework. To address this issue, we propose a new two-step framework called ELU-GCN. In the first stage, ELU-GCN conducts graph learning to learn a new graph structure (\ie ELU-graph), which enables GCNs to effectively utilize label information. In the second stage, we design a new graph contrastive learning on the GCN framework for representation learning by exploring the consistency and mutually exclusive information between the learned ELU graph and the original graph. Moreover, we theoretically demonstrate that the proposed method can ensure the generalization ability of GCNs. Extensive experiments validate the superiority of the proposed method.


ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees

arXiv.org Artificial Intelligence

Uncertainty quantification (UQ) in natural language generation (NLG) tasks remains an open challenge, exacerbated by the intricate nature of the recent large language models (LLMs). This study investigates adapting conformal prediction (CP), which can convert any heuristic measure of uncertainty into rigorous theoretical guarantees by constructing prediction sets, for black-box LLMs in open-ended NLG tasks. We propose a sampling-based uncertainty measure leveraging self-consistency and develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the design of the CP algorithm. Experimental results indicate that our uncertainty measure generally surpasses prior state-of-the-art methods. Furthermore, we calibrate the prediction sets within the model's unfixed answer distribution and achieve strict control over the correctness coverage rate across 6 LLMs on 4 free-form NLG datasets, spanning general-purpose and medical domains, while the small average set size further highlights the efficiency of our method in providing trustworthy guarantees for practical open-ended NLG applications.


Word-Sequence Entropy: Towards Uncertainty Estimation in Free-Form Medical Question Answering Applications and Beyond

arXiv.org Artificial Intelligence

Uncertainty estimation plays a pivotal role in ensuring the reliability of safety-critical human-AI interaction systems, particularly in the medical domain. However, a general method for quantifying the uncertainty of free-form answers has yet to be established in open-ended medical question-answering (QA) tasks, where irrelevant words and sequences with limited semantic information can be the primary source of uncertainty due to the presence of generative inequality. In this paper, we propose the Word-Sequence Entropy (WSE), which calibrates the uncertainty proportion at both the word and sequence levels according to the semantic relevance, with greater emphasis placed on keywords and more relevant sequences when performing uncertainty quantification. We compare WSE with 6 baseline methods on 5 free-form medical QA datasets, utilizing 7 "off-the-shelf" large language models (LLMs), and show that WSE exhibits superior performance on accurate uncertainty measurement under two standard criteria for correctness evaluation (e.g., WSE outperforms existing state-of-the-art method by 3.23% AUROC on the MedQA dataset). Additionally, in terms of the potential for real-world medical QA applications, we achieve a significant enhancement in the performance of LLMs when employing sequences with lower uncertainty, identified by WSE, as final answers (e.g., +6.36% accuracy improvement on the COVID-QA dataset), without requiring any additional task-specific fine-tuning or architectural modifications.


An Efficient Membership Inference Attack for the Diffusion Model by Proximal Initialization

arXiv.org Artificial Intelligence

Recently, diffusion models have achieved remarkable success in generating tasks, including image and audio generation. However, like other generative models, diffusion models are prone to privacy issues. In this paper, we propose an efficient query-based membership inference attack (MIA), namely Proximal Initialization Attack (PIA), which utilizes groundtruth trajectory obtained by $\epsilon$ initialized in $t=0$ and predicted point to infer memberships. Experimental results indicate that the proposed method can achieve competitive performance with only two queries on both discrete-time and continuous-time diffusion models. Moreover, previous works on the privacy of diffusion models have focused on vision tasks without considering audio tasks. Therefore, we also explore the robustness of diffusion models to MIA in the text-to-speech (TTS) task, which is an audio generation task. To the best of our knowledge, this work is the first to study the robustness of diffusion models to MIA in the TTS task. Experimental results indicate that models with mel-spectrogram (image-like) output are vulnerable to MIA, while models with audio output are relatively robust to MIA. {Code is available at \url{https://github.com/kong13661/PIA}}.


Feature Noise Boosts DNN Generalization under Label Noise

arXiv.org Artificial Intelligence

The presence of label noise in the training data has a profound impact on the generalization of deep neural networks (DNNs). In this study, we introduce and theoretically demonstrate a simple feature noise method, which directly adds noise to the features of training data, can enhance the generalization of DNNs under label noise. Specifically, we conduct theoretical analyses to reveal that label noise leads to weakened DNN generalization by loosening the PAC-Bayes generalization bound, and feature noise results in better DNN generalization by imposing an upper bound on the mutual information between the model weights and the features, which constrains the PAC-Bayes generalization bound. Furthermore, to ensure effective generalization of DNNs in the presence of label noise, we conduct application analyses to identify the optimal types and levels of feature noise to add for obtaining desirable label noise generalization. Finally, extensive experimental results on several popular datasets demonstrate the feature noise method can significantly enhance the label noise generalization of the state-of-the-art label noise method.


Exposing the Fake: Effective Diffusion-Generated Images Detection

arXiv.org Artificial Intelligence

Image synthesis has seen significant advancements with the advent of diffusion-based generative models like Denoising Diffusion Probabilistic Models (DDPM) and text-to-image diffusion models. Despite their efficacy, there is a dearth of research dedicated to detecting diffusion-generated images, which could pose potential security and privacy risks. This paper addresses this gap by proposing a novel detection method called Stepwise Error for Diffusion-generated Image Detection (SeDID). Comprising statistical-based $\text{SeDID}_{\text{Stat}}$ and neural network-based $\text{SeDID}_{\text{NNs}}$, SeDID exploits the unique attributes of diffusion models, namely deterministic reverse and deterministic denoising computation errors. Our evaluations demonstrate SeDID's superior performance over existing methods when applied to diffusion models. Thus, our work makes a pivotal contribution to distinguishing diffusion model-generated images, marking a significant step in the domain of artificial intelligence security.


Are Diffusion Models Vulnerable to Membership Inference Attacks?

arXiv.org Artificial Intelligence

Diffusion-based generative models have shown great potential for image synthesis, but there is a lack of research on the security and privacy risks they may pose. In this paper, we investigate the vulnerability of diffusion models to Membership Inference Attacks (MIAs), a common privacy concern. Our results indicate that existing MIAs designed for GANs or VAE are largely ineffective on diffusion models, either due to inapplicable scenarios (e.g., requiring the discriminator of GANs) or inappropriate assumptions (e.g., closer distances between synthetic samples and member samples). To address this gap, we propose Step-wise Error Comparing Membership Inference (SecMI), a query-based MIA that infers memberships by assessing the matching of forward process posterior estimation at each timestep. SecMI follows the common overfitting assumption in MIA where member samples normally have smaller estimation errors, compared with hold-out samples. We consider both the standard diffusion models, e.g., DDPM, and the text-to-image diffusion models, e.g., Latent Diffusion Models and Stable Diffusion. Experimental results demonstrate that our methods precisely infer the membership with high confidence on both of the two scenarios across multiple different datasets. Code is available at https://github.com/jinhaoduan/SecMI.


Improve Video Representation with Temporal Adversarial Augmentation

arXiv.org Artificial Intelligence

Recent works reveal that adversarial augmentation benefits the generalization of neural networks (NNs) if used in an appropriate manner. In this paper, we introduce Temporal Adversarial Augmentation (TA), a novel video augmentation technique that utilizes temporal attention. Unlike conventional adversarial augmentation, TA is specifically designed to shift the attention distributions of neural networks with respect to video clips by maximizing a temporal-related loss function. We demonstrate that TA will obtain diverse temporal views, which significantly affect the focus of neural networks. Training with these examples remedies the flaw of unbalanced temporal information perception and enhances the ability to defend against temporal shifts, ultimately leading to better generalization. To leverage TA, we propose Temporal Video Adversarial Fine-tuning (TAF) framework for improving video representations. TAF is a model-agnostic, generic, and interpretability-friendly training strategy. We evaluate TAF with four powerful models (TSM, GST, TAM, and TPN) over three challenging temporal-related benchmarks (Something-something V1&V2 and diving48). Experimental results demonstrate that TAF effectively improves the test accuracy of these models with notable margins without introducing additional parameters or computational costs. As a byproduct, TAF also improves the robustness under out-of-distribution (OOD) settings. Code is available at https://github.com/jinhaoduan/TAF.


Asymmetric Discrete Graph Hashing

AAAI Conferences

Recently, many graph based hashing methods have been emerged to tackle large-scale problems. However, there exists two major bottlenecks: (1) directly learning discrete hashing codes is an NP-hardoptimization problem; (2) the complexity of both storage and computational time to build a graph with n data points is O ( n 2 ). To address these two problems, in this paper, we propose a novel yetsimple supervised graph based hashing method, asymmetric discrete graph hashing, by preserving the asymmetric discrete constraint and building an asymmetric affinity matrix to learn compact binary codes.Specifically, we utilize two different instead of identical discrete matrices to better preserve the similarity of the graph with short binary codes. We generate the asymmetric affinity matrix using m ( m << n ) selected anchors to approximate the similarity among all training data so that computational time and storage requirement can be significantly improved. In addition, the proposed method jointly learns discrete binary codes and a low-dimensional projection matrix to further improve the retrieval accuracy. Extensive experiments on three benchmark large-scale databases demonstrate its superior performance over the recent state of the arts with lower training time costs.