Shi, Wei
Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture
Yao, Jiacheng, Shi, Wei, Xu, Wei, Yang, Zhaohui, Swindlehurst, A. Lee, Niyato, Dusit
Over-the-air computation (AirComp) has emerged as an essential approach for enabling communication-efficient federated learning (FL) over wireless networks. Nonetheless, the inherent analog transmission mechanism in AirComp-based FL (AirFL) intensifies challenges posed by potential Byzantine attacks. In this paper, we propose a novel Byzantine-robust FL paradigm for over-the-air transmissions, referred to as federated learning with secure adaptive clustering (FedSAC). FedSAC aims to protect a portion of the devices from attacks through zero trust architecture (ZTA) based Byzantine identification and adaptive device clustering. By conducting a one-step convergence analysis, we theoretically characterize the convergence behavior with different device clustering mechanisms and uneven aggregation weighting factors for each device. Building upon our analytical results, we formulate a joint optimization problem for the clustering and weighting factors in each communication round. To facilitate the targeted optimization, we propose a dynamic Byzantine identification method using historical reputation based on ZTA. Furthermore, we introduce a sequential clustering method, transforming the joint optimization into a weighting optimization problem without sacrificing the optimality. To optimize the weighting, we capitalize on the penalty convex-concave procedure (P-CCP) to obtain a stationary solution. Numerical results substantiate the superiority of the proposed FedSAC over existing methods in terms of both test accuracy and convergence rate.
Route Sparse Autoencoder to Interpret Large Language Models
Shi, Wei, Li, Sihang, Liang, Tao, Wan, Mingyang, Ma, Gojun, Wang, Xiang, He, Xiangnan
Mechanistic interpretability of large language models (LLMs) aims to uncover the internal processes of information propagation and reasoning. Sparse autoencoders (SAEs) have demonstrated promise in this domain by extracting interpretable and monosemantic features. However, prior works primarily focus on feature extraction from a single layer, failing to effectively capture activations that span multiple layers. In this paper, we introduce Route Sparse Autoencoder (RouteSAE), a new framework that integrates a routing mechanism with a shared SAE to efficiently extract features from multiple layers. It dynamically assigns weights to activations from different layers, incurring minimal parameter overhead while achieving high interpretability and flexibility for targeted feature manipulation. We evaluate RouteSAE through extensive experiments on Llama-3.2-1B-Instruct. Specifically, under the same sparsity constraint of 64, RouteSAE extracts 22.5% more features than baseline SAEs while achieving a 22.3% higher interpretability score. These results underscore the potential of RouteSAE as a scalable and effective method for LLM interpretability, with applications in feature discovery and model intervention. Our codes are available at https://github.com/swei2001/RouteSAEs.
MASTER: A Multi-Agent System with LLM Specialized MCTS
Gan, Bingzheng, Zhao, Yufan, Zhang, Tianyi, Huang, Jing, Li, Yusu, Teo, Shu Xian, Zhang, Changwang, Shi, Wei
Large Language Models (LLM) are increasingly being explored for problem-solving tasks. However, their strategic planning capability is often viewed with skepticism. Recent studies have incorporated the Monte Carlo Tree Search (MCTS) algorithm to augment the planning capacity of LLM. Despite its potential, MCTS relies on extensive sampling simulations to approximate the true reward distribution, which leads to two primary issues. Firstly, MCTS is effective for tasks like the Game of Go, where simulation results can yield objective rewards (e.g., 1 for a win and 0 for a loss). However, for tasks such as question answering, the result of a simulation is the answer to the question, which cannot yield an objective reward without the ground truth. Secondly, obtaining statistically significant reward estimations typically requires a sample size exceeding 30 simulations, resulting in excessive token usage and time consumption. To address these challenges, we present the Multi-Agent System with Tactical Execution and Reasoning using LLM Specialized MCTS (MASTER), a novel framework that coordinates agent recruitment and communication through LLM specialized MCTS. This system autonomously adjusts the number of agents based on task complexity and ensures focused communication among them. Comprehensive experiments across various tasks demonstrate the effectiveness of our proposed framework. It achieves 76% accuracy on HotpotQA and 80% on WebShop, setting new state-of-the-art performance on these datasets.
Session-Level Dynamic Ad Load Optimization using Offline Robust Reinforcement Learning
Liu, Tao, Xu, Qi, Shi, Wei, Hua, Zhigang, Yang, Shuang
Session-level dynamic ad load optimization aims to personalize the density and types of delivered advertisements in real time during a user's online session by dynamically balancing user experience quality and ad monetization. Traditional causal learning-based approaches struggle with key technical challenges, especially in handling confounding bias and distribution shifts. In this paper, we develop an offline deep Q-network (DQN)-based framework that effectively mitigates confounding bias in dynamic systems and demonstrates more than 80% offline gains compared to the best causal learning-based production baseline. Moreover, to improve the framework's robustness against unanticipated distribution shifts, we further enhance our framework with a novel offline robust dueling DQN approach. This approach achieves more stable rewards on multiple OpenAI-Gym datasets as perturbations increase, and provides an additional 5% offline gains on real-world ad delivery data. Deployed across multiple production systems, our approach has achieved outsized topline gains. Post-launch online A/B tests have shown double-digit improvements in the engagement-ad score trade-off efficiency, significantly enhancing our platform's capability to serve both consumers and advertisers.
Geo-LLaVA: A Large Multi-Modal Model for Solving Geometry Math Problems with Meta In-Context Learning
Xu, Shihao, Luo, Yiyang, Shi, Wei
Geometry mathematics problems pose significant challenges for large language models (LLMs) because they involve visual elements and spatial reasoning. Current methods primarily rely on symbolic character awareness to address these problems. Considering geometry problem solving is a relatively nascent field with limited suitable datasets and currently almost no work on solid geometry problem solving, we collect a geometry question-answer dataset by sourcing geometric data from Chinese high school education websites, referred to as GeoMath. It contains solid geometry questions and answers with accurate reasoning steps as compensation for existing plane geometry datasets. Additionally, we propose a Large Multi-modal Model (LMM) framework named Geo-LLaVA, which incorporates retrieval augmentation with supervised fine-tuning (SFT) in the training stage, called meta-training, and employs in-context learning (ICL) during inference to improve performance. Our fine-tuned model with ICL attains the state-of-the-art performance of 65.25% and 42.36% on selected questions of the GeoQA dataset and GeoMath dataset respectively with proper inference steps. Notably, our model initially endows the ability to solve solid geometry problems and supports the generation of reasonable solid geometry picture descriptions and problem-solving steps. Our research sets the stage for further exploration of LLMs in multi-modal math problem-solving, particularly in geometry math problems.
BPP-Search: Enhancing Tree of Thought Reasoning for Mathematical Modeling Problem Solving
Wang, Teng, Yu, Wing-Yin, He, Zhenqi, Liu, Zehua, Han, Xiongwei, Gong, Hailei, Wu, Han, Shi, Wei, She, Ruifeng, Zhu, Fangzhou, Zhong, Tao
LLMs exhibit advanced reasoning capabilities, offering the potential to transform natural language questions into mathematical models. However, existing open-source datasets in operations research domain lack detailed annotations of the modeling process, such as variable definitions, focusing solely on objective values, which hinders reinforcement learning applications. To address this, we release the StructuredOR dataset, annotated with comprehensive labels that capture the complete mathematical modeling process. We further propose BPP-Search, a algorithm that integrates reinforcement learning into a tree-of-thought structure using Beam search, a Process reward model, and a pairwise Preference algorithm. This approach enables efficient exploration of tree structures, avoiding exhaustive search while improving accuracy. Extensive experiments on StructuredOR, NL4OPT, and MAMO-ComplexLP datasets show that BPP-Search significantly outperforms state-of-the-art methods. In tree-based reasoning, BPP-Search excels in accuracy and efficiency, enabling faster retrieval of correct solutions.
SEGMENT+: Long Text Processing with Short-Context Language Models
Shi, Wei, Li, Shuang, Yu, Kerun, Chen, Jinglei, Liang, Zujie, Wu, Xinhui, Qian, Yuxi, Wei, Feng, Zheng, Bo, Liang, Jiaqing, Chen, Jiangjie, Xiao, Yanghua
There is a growing interest in expanding the input capacity of language models (LMs) across various domains. However, simply increasing the context window does not guarantee robust performance across diverse long-input processing tasks, such as understanding extensive documents and extracting detailed information from lengthy and noisy data. In response, we introduce SEGMENT+, a general framework that enables LMs to handle extended inputs within limited context windows efficiently. SEGMENT+ utilizes structured notes and a filtering module to manage information flow, resulting in a system that is both controllable and interpretable. Our extensive experiments across various model sizes, focusing on long-document question-answering and Needle-in-a-Haystack tasks, demonstrate the effectiveness of SEGMENT+ in improving performance.
Ads Supply Personalization via Doubly Robust Learning
Shi, Wei, Fu, Chen, Xu, Qi, Chen, Sanjian, Zhang, Jizhe, Zhu, Qinqin, Hua, Zhigang, Yang, Shuang
Ads supply personalization aims to balance the revenue and user engagement, two long-term objectives in social media ads, by tailoring the ad quantity and density. In the industry-scale system, the challenge for ads supply lies in modeling the counterfactual effects of a conservative supply treatment (e.g., a small density change) over an extended duration. In this paper, we present a streamlined framework for personalized ad supply. This framework optimally utilizes information from data collection policies through the doubly robust learning. Consequently, it significantly improves the accuracy of long-term treatment effect estimates. Additionally, its low-complexity design not only results in computational cost savings compared to existing methods, but also makes it scalable for billion-scale applications. Through both offline experiments and online production tests, the framework consistently demonstrated significant improvements in top-line business metrics over months. The framework has been fully deployed to live traffic in one of the world's largest social media platforms.
Crafting Personalized Agents through Retrieval-Augmented Generation on Editable Memory Graphs
Wang, Zheng, Li, Zhongyang, Jiang, Zeren, Tu, Dandan, Shi, Wei
In the age of mobile internet, user data, often referred to as memories, is continuously generated on personal devices. Effectively managing and utilizing this data to deliver services to users is a compelling research topic. In this paper, we introduce a novel task of crafting personalized agents powered by large language models (LLMs), which utilize a user's smartphone memories to enhance downstream applications with advanced LLM capabilities. To achieve this goal, we introduce EMG-RAG, a solution that combines Retrieval-Augmented Generation (RAG) techniques with an Editable Memory Graph (EMG). This approach is further optimized using Reinforcement Learning to address three distinct challenges: data collection, editability, and selectability. Extensive experiments on a real-world dataset validate the effectiveness of EMG-RAG, achieving an improvement of approximately 10% over the best existing approach. Additionally, the personalized agents have been transferred into a real smartphone AI assistant, which leads to enhanced usability.
Benchmarking LLMs for Optimization Modeling and Enhancing Reasoning via Reverse Socratic Synthesis
Yang, Zhicheng, Huang, Yinya, Shi, Wei, Feng, Liang, Song, Linqi, Wang, Yiwei, Liang, Xiaodan, Tang, Jing
Large language models (LLMs) have exhibited their problem-solving ability in mathematical reasoning. Solving realistic optimization (OPT) problems in industrial application scenarios requires advanced and applied math ability. However, current OPT benchmarks that merely solve linear programming are far from complex realistic situations. In this work, we propose E-OPT, a benchmark for end-to-end optimization problem-solving with human-readable inputs and outputs. E-OPT contains rich optimization problems, including linear/nonlinear programming with/without table data, which can comprehensively evaluate LLMs' solving ability. In our benchmark, LLMs are required to correctly understand the problem in E-OPT and call code solver to get precise numerical answers. Furthermore, to alleviate the data scarcity for optimization problems, and to bridge the gap between open-source LLMs on a small scale (e.g., Llama-2-7b and Llama-3-8b) and closed-source LLMs (e.g., GPT-4), we further propose a novel data synthesis method namely ReSocratic. Unlike general data synthesis methods that proceed from questions to answers, ReSocratic first incrementally synthesizes optimization scenarios with mathematical formulations step by step and then back-translates the generated scenarios into questions. In such a way, we construct the ReSocratic-29k dataset from a small seed sample pool with the powerful open-source large model DeepSeek-V2. To demonstrate the effectiveness of ReSocratic, we conduct supervised fine-tuning with ReSocratic-29k on multiple open-source models. The results show that Llama3-8b is significantly improved from 13.6% to 51.7% on E-OPT, while DeepSeek-V2 reaches 61.0%, approaching 65.5% of GPT-4.