Goto

Collaborating Authors

 Shi, Lu


An Real-Sim-Real (RSR) Loop Framework for Generalizable Robotic Policy Transfer with Differentiable Simulation

arXiv.org Artificial Intelligence

The sim-to-real gap remains a critical challenge in robotics, hindering the deployment of algorithms trained in simulation to real-world systems. This paper introduces a novel Real-Sim-Real (RSR) loop framework leveraging differentiable simulation to address this gap by iteratively refining simulation parameters, aligning them with real-world conditions, and enabling robust and efficient policy transfer. A key contribution of our work is the design of an informative cost function that encourages the collection of diverse and representative real-world data, minimizing bias and maximizing the utility of each data point for simulation refinement. This cost function integrates seamlessly into existing reinforcement learning algorithms (e.g., PPO, SAC) and ensures a balanced exploration of critical regions in the real domain. Furthermore, our approach is implemented on the versatile Mujoco MJX platform, and our framework is compatible with a wide range of robotic systems. Experimental results on several robotic manipulation tasks demonstrate that our method significantly reduces the sim-to-real gap, achieving high task performance and generalizability across diverse scenarios of both explicit and implicit environmental uncertainties.


Bridging the Resource Gap: Deploying Advanced Imitation Learning Models onto Affordable Embedded Platforms

arXiv.org Artificial Intelligence

Advanced imitation learning with structures like the transformer is increasingly demonstrating its advantages in robotics. However, deploying these large-scale models on embedded platforms remains a major challenge. In this paper, we propose a pipeline that facilitates the migration of advanced imitation learning algorithms to edge devices. The process is achieved via an efficient model compression method and a practical asynchronous parallel method Temporal Ensemble with Dropped Actions (TEDA) that enhances the smoothness of operations. To show the efficiency of the proposed pipeline, large-scale imitation learning models are trained on a server and deployed on an edge device to complete various manipulation tasks.


Aegis:An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering

arXiv.org Artificial Intelligence

Functional safety is a critical aspect of automotive engineering, encompassing all phases of a vehicle's lifecycle, including design, development, production, operation, and decommissioning. This domain involves highly knowledge-intensive tasks. This paper introduces Aegis: An Advanced LLM-Based Multi-Agent for Intelligent Functional Safety Engineering. Aegis is specifically designed to support complex functional safety tasks within the automotive sector. It is tailored to perform Hazard Analysis and Risk Assessment(HARA), document Functional Safety Requirements(FSR), and plan test cases for Automatic Emergency Braking(AEB) systems. The most advanced version, Aegis-Max, leverages Retrieval-Augmented Generation(RAG) and reflective mechanisms to enhance its capability in managing complex, knowledge-intensive tasks. Additionally, targeted prompt refinement by professional functional safety practitioners can significantly optimize Aegis's performance in the functional safety domain. This paper demonstrates the potential of Aegis to improve the efficiency and effectiveness of functional safety processes in automotive engineering.


Arm-Constrained Curriculum Learning for Loco-Manipulation of the Wheel-Legged Robot

arXiv.org Artificial Intelligence

Incorporating a robotic manipulator into a wheel-legged robot enhances its agility and expands its potential for practical applications. However, the presence of potential instability and uncertainties presents additional challenges for control objectives. In this paper, we introduce an arm-constrained curriculum learning architecture to tackle the issues introduced by adding the manipulator. Firstly, we develop an arm-constrained reinforcement learning algorithm to ensure safety and stability in control performance. Additionally, to address discrepancies in reward settings between the arm and the base, we propose a reward-aware curriculum learning method. The policy is first trained in Isaac gym and transferred to the physical robot to do dynamic grasping tasks, including the door-opening task, fan-twitching task and the relay-baton-picking and following task. The results demonstrate that our proposed approach effectively controls the arm-equipped wheel-legged robot to master dynamic grasping skills, allowing it to chase and catch a moving object while in motion. Please refer to our website (https://acodedog.github.io/wheel-legged-loco-manipulation) for the code and supplemental videos.


AD-AutoGPT: An Autonomous GPT for Alzheimer's Disease Infodemiology

arXiv.org Artificial Intelligence

This disease, characterized by cognitive impairments such as memory loss, predominantly affects aging populations, exerting an escalating burden on global healthcare systems as societies continue to age [3]. The significance of AD is further magnified by the increasing life expectancy globally, with the disease now recognized as a leading cause of disability and dependency among older people [4]. Consequently, AD has substantial social, economic, and health system implications, making its understanding and awareness of paramount importance [5, 6]. Despite the ubiquity and severity of AD, a gap persists in comprehensive, data-driven public understanding of this complex health narrative. Traditionally, public health professionals have to rely on labor-intensive methods such as web scraping, API data collection, data postprocessing, and analysis/synthesis to gather insights from news media, health reports, and other textual sources [7, 8, 9].


Koopman Operators for Modeling and Control of Soft Robotics

arXiv.org Artificial Intelligence

Purpose of review: We review recent advances in algorithmic development and validation for modeling and control of soft robots leveraging the Koopman operator theory. Recent findings: We identify the following trends in recent research efforts in this area. (1) The design of lifting functions used in the data-driven approximation of the Koopman operator is critical for soft robots. (2) Robustness considerations are emphasized. Works are proposed to reduce the effect of uncertainty and noise during the process of modeling and control. (3) The Koopman operator has been embedded into different model-based control structures to drive the soft robots. Summary: Because of their compliance and nonlinearities, modeling and control of soft robots face key challenges. To resolve these challenges, Koopman operator-based approaches have been proposed, in an effort to express the nonlinear system in a linear manner. The Koopman operator enables global linearization to reduce nonlinearities and/or serves as model constraints in model-based control algorithms for soft robots. Various implementations in soft robotic systems are illustrated and summarized in the review.