Goto

Collaborating Authors

 Shi, Huihong


M$^2$-ViT: Accelerating Hybrid Vision Transformers with Two-Level Mixed Quantization

arXiv.org Artificial Intelligence

Although Vision Transformers (ViTs) have achieved significant success, their intensive computations and substantial memory overheads challenge their deployment on edge devices. To address this, efficient ViTs have emerged, typically featuring Convolution-Transformer hybrid architectures to enhance both accuracy and hardware efficiency. While prior work has explored quantization for efficient ViTs to marry the best of efficient hybrid ViT architectures and quantization, it focuses on uniform quantization and overlooks the potential advantages of mixed quantization. Meanwhile, although several works have studied mixed quantization for standard ViTs, they are not directly applicable to hybrid ViTs due to their distinct algorithmic and hardware characteristics. To bridge this gap, we present M$^2$-ViT to accelerate Convolution-Transformer hybrid efficient ViTs with two-level mixed quantization. Specifically, we introduce a hardware-friendly two-level mixed quantization (M$^2$Q) strategy, characterized by both mixed quantization precision and mixed quantization schemes (i.e., uniform and power-of-two), to exploit the architectural properties of efficient ViTs. We further build a dedicated accelerator with heterogeneous computing engines to transform our algorithmic benefits into real hardware improvements. Experimental results validate our effectiveness, showcasing an average of $80\%$ energy-delay product (EDP) saving with comparable quantization accuracy compared to the prior work.


Unveiling and Harnessing Hidden Attention Sinks: Enhancing Large Language Models without Training through Attention Calibration

arXiv.org Artificial Intelligence

Attention is a fundamental component behind the remarkable achievements of large language models (LLMs). However, our current understanding of the attention mechanism, especially regarding how attention distributions are established, remains limited. Inspired by recent studies that explore the presence of attention sink in the initial token, which receives disproportionately large attention scores despite their lack of semantic importance, this work delves deeper into this phenomenon. We aim to provide a more profound understanding of the existence of attention sinks within LLMs and to uncover ways to enhance the achievable accuracy of LLMs by directly optimizing the attention distributions, without the need for weight finetuning. Specifically, this work begins with comprehensive visualizations of the attention distributions in LLMs during inference across various inputs and tasks. Based on these visualizations, to the best of our knowledge, we are the first to discover that (1) attention sinks occur not only at the start of sequences but also within later tokens of the input, and (2) not all attention sinks have a positive impact on the achievable accuracy of LLMs. Building upon our findings, we propose a training-free Attention Calibration Technique (ACT) that automatically optimizes the attention distributions on the fly during inference in an input-adaptive manner. Extensive experiments validate that ACT consistently enhances the accuracy of various LLMs across different applications. Specifically, ACT achieves an average improvement of up to 7.30% in accuracy across different datasets when applied to Llama-30B. Our code is available at https://github.com/GATECH-EIC/ACT.


ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown impressive performance on language tasks but face challenges when deployed on resource-constrained devices due to their extensive parameters and reliance on dense multiplications, resulting in high memory demands and latency bottlenecks. Shift-and-add reparameterization offers a promising solution by replacing costly multiplications with hardware-friendly primitives in both the attention and multi-layer perceptron (MLP) layers of an LLM. However, current reparameterization techniques require training from scratch or full parameter fine-tuning to restore accuracy, which is resource-intensive for LLMs. To address this, we propose accelerating pretrained LLMs through post-training shift-and-add reparameterization, creating efficient multiplication-free models, dubbed ShiftAddLLM. Specifically, we quantize each weight matrix into binary matrices paired with group-wise scaling factors. The associated multiplications are reparameterized into (1) shifts between activations and scaling factors and (2) queries and adds according to the binary matrices. To reduce accuracy loss, we present a multi-objective optimization method to minimize both weight and output activation reparameterization errors. Additionally, based on varying sensitivity across layers to reparameterization, we develop an automated bit allocation strategy to further reduce memory usage and latency. Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM, achieving average perplexity improvements of 5.6 and 22.7 points at comparable or lower latency compared to the most competitive quantized LLMs at 3 and 2 bits, respectively, and more than 80% memory and energy reductions over the original LLMs. Codes and models are available at https://github.com/GATECH-EIC/ShiftAddLLM.


P$^2$-ViT: Power-of-Two Post-Training Quantization and Acceleration for Fully Quantized Vision Transformer

arXiv.org Artificial Intelligence

Vision Transformers (ViTs) have excelled in computer vision tasks but are memory-consuming and computation-intensive, challenging their deployment on resource-constrained devices. To tackle this limitation, prior works have explored ViT-tailored quantization algorithms but retained floating-point scaling factors, which yield non-negligible re-quantization overhead, limiting ViTs' hardware efficiency and motivating more hardware-friendly solutions. To this end, we propose \emph{P$^2$-ViT}, the first \underline{P}ower-of-Two (PoT) \underline{p}ost-training quantization and acceleration framework to accelerate fully quantized ViTs. Specifically, {as for quantization,} we explore a dedicated quantization scheme to effectively quantize ViTs with PoT scaling factors, thus minimizing the re-quantization overhead. Furthermore, we propose coarse-to-fine automatic mixed-precision quantization to enable better accuracy-efficiency trade-offs. {In terms of hardware,} we develop {a dedicated chunk-based accelerator} featuring multiple tailored sub-processors to individually handle ViTs' different types of operations, alleviating reconfigurable overhead. Additionally, we design {a tailored row-stationary dataflow} to seize the pipeline processing opportunity introduced by our PoT scaling factors, thereby enhancing throughput. Extensive experiments consistently validate P$^2$-ViT's effectiveness. {Particularly, we offer comparable or even superior quantization performance with PoT scaling factors when compared to the counterpart with floating-point scaling factors. Besides, we achieve up to $\mathbf{10.1\times}$ speedup and $\mathbf{36.8\times}$ energy saving over GPU's Turing Tensor Cores, and up to $\mathbf{1.84\times}$ higher computation utilization efficiency against SOTA quantization-based ViT accelerators. Codes are available at \url{https://github.com/shihuihong214/P2-ViT}.


Trio-ViT: Post-Training Quantization and Acceleration for Softmax-Free Efficient Vision Transformer

arXiv.org Artificial Intelligence

Motivated by the huge success of Transformers in the field of natural language processing (NLP), Vision Transformers (ViTs) have been rapidly developed and achieved remarkable performance in various computer vision tasks. However, their huge model sizes and intensive computations hinder ViTs' deployment on embedded devices, calling for effective model compression methods, such as quantization. Unfortunately, due to the existence of hardware-unfriendly and quantization-sensitive non-linear operations, particularly {Softmax}, it is non-trivial to completely quantize all operations in ViTs, yielding either significant accuracy drops or non-negligible hardware costs. In response to challenges associated with \textit{standard ViTs}, we focus our attention towards the quantization and acceleration for \textit{efficient ViTs}, which not only eliminate the troublesome Softmax but also integrate linear attention with low computational complexity, and propose \emph{Trio-ViT} accordingly. Specifically, at the algorithm level, we develop a {tailored post-training quantization engine} taking the unique activation distributions of Softmax-free efficient ViTs into full consideration, aiming to boost quantization accuracy. Furthermore, at the hardware level, we build an accelerator dedicated to the specific Convolution-Transformer hybrid architecture of efficient ViTs, thereby enhancing hardware efficiency. Extensive experimental results consistently prove the effectiveness of our Trio-ViT framework. {Particularly, we can gain up to $\uparrow$$\mathbf{7.2}\times$ and $\uparrow$$\mathbf{14.6}\times$ FPS under comparable accuracy over state-of-the-art ViT accelerators, as well as $\uparrow$$\mathbf{5.9}\times$ and $\uparrow$$\mathbf{2.0}\times$ DSP efficiency.} Codes will be released publicly upon acceptance.


ShiftAddViT: Mixture of Multiplication Primitives Towards Efficient Vision Transformer

arXiv.org Artificial Intelligence

Vision Transformers (ViTs) have shown impressive performance and have become a unified backbone for multiple vision tasks. However, both the attention mechanism and multi-layer perceptrons (MLPs) in ViTs are not sufficiently efficient due to dense multiplications, leading to costly training and inference. To this end, we propose to reparameterize pre-trained ViTs with a mixture of multiplication primitives, e.g., bitwise shifts and additions, towards a new type of multiplication-reduced model, dubbed $\textbf{ShiftAddViT}$, which aims to achieve end-to-end inference speedups on GPUs without requiring training from scratch. Specifically, all $\texttt{MatMuls}$ among queries, keys, and values are reparameterized using additive kernels, after mapping queries and keys to binary codes in Hamming space. The remaining MLPs or linear layers are then reparameterized with shift kernels. We utilize TVM to implement and optimize those customized kernels for practical hardware deployment on GPUs. We find that such a reparameterization on attention maintains model accuracy, while inevitably leading to accuracy drops when being applied to MLPs. To marry the best of both worlds, we further propose a new mixture of experts (MoE) framework to reparameterize MLPs by taking multiplication or its primitives as experts, e.g., multiplication and shift, and designing a new latency-aware load-balancing loss. Such a loss helps to train a generic router for assigning a dynamic amount of input tokens to different experts according to their latency. Extensive experiments on various 2D/3D Transformer-based vision tasks consistently validate the effectiveness of our proposed ShiftAddViT, achieving up to $\textbf{5.18$\times$}$ latency reductions on GPUs and $\textbf{42.9}$% energy savings, while maintaining a comparable accuracy as original or efficient ViTs.


NASA: Neural Architecture Search and Acceleration for Hardware Inspired Hybrid Networks

arXiv.org Artificial Intelligence

To this end, we propose a Neural Architecture DNN-powered solutions in numerous real-world applications. Search and Acceleration framework dubbed NASA, which However, the extensively used multiplications in DNNs enables automated multiplication-reduced DNN development dominate their energy consumption and have largely challenged and integrates a dedicated multiplication-reduced accelerator DNNs' achievable hardware efficiency, motivating for boosting DNNs' achievable efficiency. Specifically, multiplication-free DNNs that adopt hardware-friendly operators, NASA adopts neural architecture search (NAS) spaces that such as additions and bit-wise shifts, which require a augment the state-of-the-art one with hardware inspired smaller unit energy and area cost as compared to multiplications multiplication-free operators, such as shift and adder, armed [26]. In particular, pioneering works of multiplicationfree with a novel progressive pretrain strategy (PGP) together DNNs include (1) DeepShift [6] which proposes to adopt with customized training recipes to automatically search for merely shift layers for DNNs, (2) AdderNet [20] which advocates optimal multiplication-reduced DNNs; On top of that, NASA using adder layers to implement DNNs for trading the further develops a dedicated accelerator, which advocates a massive multiplications with lower-cost additions, and (3) chunk-based template and auto-mapper dedicated for NASA-ShiftAddNet [26] which combines both shift and adder layers NAS resulting DNNs to better leverage their algorithmic to construct DNNs for better trading-off the achievable properties for boosting hardware efficiency.


ViTCoD: Vision Transformer Acceleration via Dedicated Algorithm and Accelerator Co-Design

arXiv.org Artificial Intelligence

Vision Transformers (ViTs) have achieved state-of-the-art performance on various vision tasks. However, ViTs' self-attention module is still arguably a major bottleneck, limiting their achievable hardware efficiency. Meanwhile, existing accelerators dedicated to NLP Transformers are not optimal for ViTs. This is because there is a large difference between ViTs and NLP Transformers: ViTs have a relatively fixed number of input tokens, whose attention maps can be pruned by up to 90% even with fixed sparse patterns; while NLP Transformers need to handle input sequences of varying numbers of tokens and rely on on-the-fly predictions of dynamic sparse attention patterns for each input to achieve a decent sparsity (e.g., >=50%). To this end, we propose a dedicated algorithm and accelerator co-design framework dubbed ViTCoD for accelerating ViTs. Specifically, on the algorithm level, ViTCoD prunes and polarizes the attention maps to have either denser or sparser fixed patterns for regularizing two levels of workloads without hurting the accuracy, largely reducing the attention computations while leaving room for alleviating the remaining dominant data movements; on top of that, we further integrate a lightweight and learnable auto-encoder module to enable trading the dominant high-cost data movements for lower-cost computations. On the hardware level, we develop a dedicated accelerator to simultaneously coordinate the enforced denser/sparser workloads and encoder/decoder engines for boosted hardware utilization. Extensive experiments and ablation studies validate that ViTCoD largely reduces the dominant data movement costs, achieving speedups of up to 235.3x, 142.9x, 86.0x, 10.1x, and 6.8x over general computing platforms CPUs, EdgeGPUs, GPUs, and prior-art Transformer accelerators SpAtten and Sanger under an attention sparsity of 90%, respectively.