Shi, Dachuan
Superficial Self-Improved Reasoners Benefit from Model Merging
Yuan, Xiangchi, Zhang, Chunhui, Liu, Zheyuan, Shi, Dachuan, Vosoughi, Soroush, Lee, Wenke
As scaled language models (LMs) approach human-level reasoning capabilities, self-improvement emerges as a solution to synthesizing high-quality data corpus. While previous research has identified model collapse as a risk in self-improvement, where model outputs become increasingly deterministic, we discover a more fundamental challenge: the superficial self-improved reasoners phenomenon. In particular, our analysis reveals that even when LMs show improved in-domain (ID) reasoning accuracy, they actually compromise their generalized reasoning capabilities on out-of-domain (OOD) tasks due to memorization rather than genuine. Through a systematic investigation of LM architecture, we discover that during self-improvement, LM weight updates are concentrated in less reasoning-critical layers, leading to superficial learning. To address this, we propose Iterative Model Merging (IMM), a method that strategically combines weights from original and self-improved models to preserve generalization while incorporating genuine reasoning improvements. Our approach effectively mitigates both LM collapse and superficial learning, moving towards more stable self-improving systems.
AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment
Fu, Yonggan, Yu, Zhongzhi, Li, Junwei, Qian, Jiayi, Zhang, Yongan, Yuan, Xiangchi, Shi, Dachuan, Yakunin, Roman, Lin, Yingyan Celine
Motivated by the transformative capabilities of large language models (LLMs) across various natural language tasks, there has been a growing demand to deploy these models effectively across diverse real-world applications and platforms. However, the challenge of efficiently deploying LLMs has become increasingly pronounced due to the varying application-specific performance requirements and the rapid evolution of computational platforms, which feature diverse resource constraints and deployment flows. These varying requirements necessitate LLMs that can adapt their structures (depth and width) for optimal efficiency across different platforms and application specifications. To address this critical gap, we propose AmoebaLLM, a novel framework designed to enable the instant derivation of LLM subnets of arbitrary shapes, which achieve the accuracy-efficiency frontier and can be extracted immediately after a one-time fine-tuning. In this way, AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications. Specifically, AmoebaLLM integrates three innovative components: (1) a knowledge-preserving subnet selection strategy that features a dynamic-programming approach for depth shrinking and an importance-driven method for width shrinking; (2) a shape-aware mixture of LoRAs to mitigate gradient conflicts among subnets during fine-tuning; and (3) an in-place distillation scheme with loss-magnitude balancing as the fine-tuning objective. Extensive experiments validate that AmoebaLLM not only sets new standards in LLM adaptability but also successfully delivers subnets that achieve state-of-the-art trade-offs between accuracy and efficiency.
CrossGET: Cross-Guided Ensemble of Tokens for Accelerating Vision-Language Transformers
Shi, Dachuan, Tao, Chaofan, Rao, Anyi, Yang, Zhendong, Yuan, Chun, Wang, Jiaqi
Recent vision-language models have achieved tremendous progress far beyond what we ever expected. However, their computational costs are also dramatically growing with rapid development, especially for the large models. It makes model acceleration exceedingly critical in a scenario of limited resources. Although extensively studied for unimodal models, the acceleration for multimodal models, especially the vision-language Transformers, is relatively under-explored. To pursue more efficient and accessible vision-language Transformers, this paper introduces \textbf{Cross}-\textbf{G}uided \textbf{E}nsemble of \textbf{T}okens (\textbf{\emph{CrossGET}}), a universal acceleration framework for vision-language Transformers. This framework adaptively combines tokens through real-time, cross-modal guidance, thereby achieving substantial acceleration while keeping high performance. \textit{CrossGET} has two key innovations: 1) \textit{Cross-Guided Matching and Ensemble}. \textit{CrossGET} incorporates cross-modal guided token matching and ensemble to exploit cross-modal information effectively, only introducing cross-modal tokens with negligible extra parameters. 2) \textit{Complete-Graph Soft Matching}. In contrast to the existing bipartite soft matching approach, \textit{CrossGET} introduces a complete-graph soft matching policy to achieve more reliable token-matching results while maintaining parallelizability and high efficiency. Extensive experiments are conducted on various vision-language tasks, including image-text retrieval, visual reasoning, image captioning, and visual question answering. Performance on both classic multimodal architectures and emerging multimodal LLMs demonstrate the effectiveness and versatility of the proposed \textit{CrossGET} framework. The code will be at \url{https://github.com/sdc17/CrossGET}.
UPop: Unified and Progressive Pruning for Compressing Vision-Language Transformers
Shi, Dachuan, Tao, Chaofan, Jin, Ying, Yang, Zhendong, Yuan, Chun, Wang, Jiaqi
Real-world data contains a vast amount of multimodal information, among which vision and language are the two most representative modalities. Moreover, increasingly heavier models, \textit{e}.\textit{g}., Transformers, have attracted the attention of researchers to model compression. However, how to compress multimodal models, especially vison-language Transformers, is still under-explored. This paper proposes the \textbf{U}nified and \textbf{P}r\textbf{o}gressive \textbf{P}runing (\textbf{\emph{UPop}}) as a universal vison-language Transformer compression framework, which incorporates 1) unifiedly searching multimodal subnets in a continuous optimization space from the original model, which enables automatic assignment of pruning ratios among compressible modalities and structures; 2) progressively searching and retraining the subnet, which maintains convergence between the search and retrain to attain higher compression ratios. Experiments on various tasks, datasets, and model architectures demonstrate the effectiveness and versatility of the proposed UPop framework. The code is available at https://github.com/sdc17/UPop.