Goto

Collaborating Authors

 Shi, Bowen


Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

arXiv.org Artificial Intelligence

The quantification of audio aesthetics remains a complex challenge in audio processing, primarily due to its subjective nature, which is influenced by human perception and cultural context. Traditional methods often depend on human listeners for evaluation, leading to inconsistencies and high resource demands. This paper addresses the growing need for automated systems capable of predicting audio aesthetics without human intervention. Such systems are crucial for applications like data filtering, pseudo-labeling large datasets, and evaluating generative audio models, especially as these models become more sophisticated. In this work, we introduce a novel approach to audio aesthetic evaluation by proposing new annotation guidelines that decompose human listening perspectives into four distinct axes. We develop and train no-reference, per-item prediction models that offer a more nuanced assessment of audio quality. Our models are evaluated against human mean opinion scores (MOS) and existing methods, demonstrating comparable or superior performance. This research not only advances the field of audio aesthetics but also provides open-source models and datasets to facilitate future work and benchmarking. We release our code and pre-trained model at: https://github.com/facebookresearch/audiobox-aesthetics


Molecular Graph Contrastive Learning with Line Graph

arXiv.org Artificial Intelligence

Trapped by the label scarcity in molecular property prediction and drug design, graph contrastive learning (GCL) came forward. Leading contrastive learning works show two kinds of view generators, that is, random or learnable data corruption and domain knowledge incorporation. While effective, the two ways also lead to molecular semantics altering and limited generalization capability, respectively. To this end, we relate the \textbf{L}in\textbf{E} graph with \textbf{MO}lecular graph co\textbf{N}trastive learning and propose a novel method termed \textit{LEMON}. Specifically, by contrasting the given graph with the corresponding line graph, the graph encoder can freely encode the molecular semantics without omission. Furthermore, we present a new patch with edge attribute fusion and two local contrastive losses enhance information transmission and tackle hard negative samples. Compared with state-of-the-art (SOTA) methods for view generation, superior performance on molecular property prediction suggests the effectiveness of our proposed framework.


MDCure: A Scalable Pipeline for Multi-Document Instruction-Following

arXiv.org Artificial Intelligence

Multi-document (MD) processing is crucial for LLMs to handle real-world tasks such as summarization and question-answering across large sets of documents. While LLMs have improved at processing long inputs, MD contexts still present challenges, such as managing inter-document dependencies, redundancy, and incoherent structures. We introduce MDCure, a scalable and effective fine-tuning pipeline to enhance the MD capabilities of LLMs without the computational cost of pre-training or reliance on human annotated data. MDCure is based on generation of high-quality synthetic MD instruction data from sets of related articles via targeted prompts. We further introduce MDCureRM, a multi-objective reward model which filters generated data based on their training utility for MD settings. With MDCure, we fine-tune a variety of LLMs, from the FlanT5, Qwen2, and LLAMA3.1 model families, up to 70B parameters in size. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks show MDCure consistently improves performance over pre-trained baselines and over corresponding base models by up to 75.5%. Our code, datasets, and models are available at https://github.com/yale-nlp/MDCure.


MusicFlow: Cascaded Flow Matching for Text Guided Music Generation

arXiv.org Artificial Intelligence

We introduce MusicFlow, a cascaded text-to-music generation model based on flow matching. Based on self-supervised representations to bridge between text descriptions and music audios, we construct two flow matching networks to model the conditional distribution of semantic and acoustic features. Additionally, we leverage masked prediction as the training objective, enabling the model to generalize to other tasks such as music infilling and continuation in a zero-shot manner. Experiments on MusicCaps reveal that the music generated by MusicFlow exhibits superior quality and text coherence despite being over $2\sim5$ times smaller and requiring $5$ times fewer iterative steps. Simultaneously, the model can perform other music generation tasks and achieves competitive performance in music infilling and continuation. Our code and model will be publicly available.


Movie Gen: A Cast of Media Foundation Models

arXiv.org Artificial Intelligence

We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.


Learning Fine-Grained Controllability on Speech Generation via Efficient Fine-Tuning

arXiv.org Artificial Intelligence

In this work, we propose Voicebox Adapter, Our contributions are as follows: (1) we propose Voicebox a novel approach that integrates fine-grained conditions into a Adapter, which augments Voicebox, a pre-trained speech pre-trained Voicebox speech generation model using a crossattention generation model, with fine-grained controllability; (2) we explore module. To ensure a smooth integration of newly different efficient fine-tuning methods to bridge the gap added modules with pre-trained ones, we explore various efficient between pre-trained parameters and new fine-grained conditioning fine-tuning approaches. Our experiment shows that the modules; (3) we show that Voicebox Adapter can generalize LoRA with bias-tuning configuration yields the best performance, across various fine-grained conditions, attaining performance enhancing controllability without compromising speech comparable to that achieved by fine-tuning the entire model quality. Across three fine-grained conditional generation tasks, with significantly fewer fine-tuned parameters; (4) we conduct we demonstrate the effectiveness and resource efficiency of experiments using varying amounts of fine-tuning data and different Voicebox Adapter. Follow-up experiments further highlight the hidden dimension sizes, analyzing the performance of robustness of Voicebox Adapter across diverse data setups.


XLAVS-R: Cross-Lingual Audio-Visual Speech Representation Learning for Noise-Robust Speech Perception

arXiv.org Artificial Intelligence

Speech recognition and translation systems perform poorly on noisy inputs, which are frequent in realistic environments. Augmenting these systems with visual signals has the potential to improve robustness to noise. However, audio-visual (AV) data is only available in limited amounts and for fewer languages than audio-only resources. To address this gap, we present XLAVS-R, a cross-lingual audio-visual speech representation model for noise-robust speech recognition and translation in over 100 languages. It is designed to maximize the benefits of limited multilingual AV pre-training data, by building on top of audio-only multilingual pre-training and simplifying existing pre-training schemes. Extensive evaluation on the MuAViC benchmark shows the strength of XLAVS-R on downstream audio-visual speech recognition and translation tasks, where it outperforms the previous state of the art by up to 18.5% WER and 4.7 BLEU given noisy AV inputs, and enables strong zero-shot audio-visual ability with audio-only fine-tuning.


Towards Privacy-Aware Sign Language Translation at Scale

arXiv.org Artificial Intelligence

A major impediment to the advancement of sign language translation (SLT) is data scarcity. Much of the sign language data currently available on the web cannot be used for training supervised models due to the lack of aligned captions. Furthermore, scaling SLT using large-scale web-scraped datasets bears privacy risks due to the presence of biometric information, which the responsible development of SLT technologies should account for. In this work, we propose a two-stage framework for privacy-aware SLT at scale that addresses both of these issues. We introduce SSVP-SLT, which leverages self-supervised video pretraining on anonymized and unannotated videos, followed by supervised SLT finetuning on a curated parallel dataset. SSVP-SLT achieves state-of-the-art finetuned and zero-shot gloss-free SLT performance on the How2Sign dataset, outperforming the strongest respective baselines by over 3 BLEU-4. Based on controlled experiments, we further discuss the advantages and limitations of self-supervised pretraining and anonymization via facial obfuscation for SLT.


Audiobox: Unified Audio Generation with Natural Language Prompts

arXiv.org Artificial Intelligence

Audio is an essential part of our life, but creating it often requires expertise and is time-consuming. Research communities have made great progress over the past year advancing the performance of large scale audio generative models for a single modality (speech, sound, or music) through adopting more powerful generative models and scaling data. However, these models lack controllability in several aspects: speech generation models cannot synthesize novel styles based on text description and are limited on domain coverage such as outdoor environments; sound generation models only provide coarse-grained control based on descriptions like "a person speaking" and would only generate mumbling human voices. This paper presents Audiobox, a unified model based on flow-matching that is capable of generating various audio modalities. We design description-based and example-based prompting to enhance controllability and unify speech and sound generation paradigms. We allow transcript, vocal, and other audio styles to be controlled independently when generating speech. To improve model generalization with limited labels, we adapt a self-supervised infilling objective to pre-train on large quantities of unlabeled audio. Audiobox sets new benchmarks on speech and sound generation (0.745 similarity on Librispeech for zero-shot TTS; 0.77 FAD on AudioCaps for text-to-sound) and unlocks new methods for generating audio with novel vocal and acoustic styles. We further integrate Bespoke Solvers, which speeds up generation by over 25 times compared to the default ODE solver for flow-matching, without loss of performance on several tasks. Our demo is available at https://audiobox.metademolab.com/


AiluRus: A Scalable ViT Framework for Dense Prediction

arXiv.org Artificial Intelligence

Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance. However, when it comes to handling long token sequences, especially in dense prediction tasks that require high-resolution input, the complexity of ViTs increases significantly. Notably, dense prediction tasks, such as semantic segmentation or object detection, emphasize more on the contours or shapes of objects, while the texture inside objects is less informative. Motivated by this observation, we propose to apply adaptive resolution for different regions in the image according to their importance. Specifically, at the intermediate layer of the ViT, we utilize a spatial-aware density-based clustering algorithm to select representative tokens from the token sequence. Once the representative tokens are determined, we proceed to merge other tokens into their closest representative token. Consequently, semantic similar tokens are merged together to form low-resolution regions, while semantic irrelevant tokens are preserved independently as high-resolution regions. This strategy effectively reduces the number of tokens, allowing subsequent layers to handle a reduced token sequence and achieve acceleration. We evaluate our proposed method on three different datasets and observe promising performance. For example, the "Segmenter ViT-L" model can be accelerated by 48% FPS without fine-tuning, while maintaining the performance. Additionally, our method can be applied to accelerate fine-tuning as well. Experimental results demonstrate that we can save 52% training time while accelerating 2.46 times FPS with only a 0.09% performance drop. The code is available at https://github.com/caddyless/ailurus/tree/main.