Goto

Collaborating Authors

 Shen, Yujia


A New Perspective on Learning Context-Specific Independence

arXiv.org Artificial Intelligence

Local structure such as context-specific independence (CSI) has received much attention in the probabilistic graphical model (PGM) literature, as it facilitates the modeling of large complex systems, as well as for reasoning with them. In this paper, we provide a new perspective on how to learn CSIs from data. We propose to first learn a functional and parameterized representation of a conditional probability table (CPT), such as a neural network. Next, we quantize this continuous function, into an arithmetic circuit representation that facilitates efficient inference. In the first step, we can leverage the many powerful tools that have been developed in the machine learning literature. In the second step, we exploit more recently-developed analytic tools from explainable AI, for the purposes of learning CSIs. Finally, we contrast our approach, empirically and conceptually, with more traditional variable-splitting approaches, that search for CSIs more explicitly.


Conditional PSDDs: Modeling and Learning With Modular Knowledge

AAAI Conferences

Probabilistic Sentential Decision Diagrams (PSDDs) have been proposed for learning tractable probability distributions from a combination of data and background knowledge (in the form of Boolean constraints). In this paper, we propose a variant on PSDDs, called conditional PSDDs, for representing a family of distributions that are conditioned on the same set of variables. Conditional PSDDs can also be learned from a combination of data and (modular) background knowledge. We use conditional PSDDs to define a more structured version of Bayesian networks, in which nodes can have an exponential number of states, hence expanding the scope of domains where Bayesian networks can be applied. Compared to classical PSDDs, the new representation exploits the independencies captured by a Bayesian network to decompose the learning process into localized learning tasks, which enables the learning of better models while using less computation. We illustrate the promise of conditional PSDDs and structured Bayesian networks empirically, and by providing a case study to the modeling of distributions over routes on a map.


Tractability in Structured Probability Spaces

Neural Information Processing Systems

Recently, the Probabilistic Sentential Decision Diagram (PSDD) has been proposed as a framework for systematically inducing and learning distributions over structured objects, including combinatorial objects such as permutations and rankings, paths and matchings on a graph, etc. In this paper, we study the scalability of such models in the context of representing and learning distributions over routes on a map. In particular, we introduce the notion of a hierarchical route distribution and show how they can be leveraged to construct tractable PSDDs over route distributions, allowing them to scale to larger maps. We illustrate the utility of our model empirically, in a route prediction task, showing how accuracy can be increased significantly compared to Markov models.


Learning Bayesian networks with ancestral constraints

Neural Information Processing Systems

We consider the problem of learning Bayesian networks optimally, when subject to background knowledge in the form of ancestral constraints. Our approach is based on a recently proposed framework for optimal structure learning based on non-decomposable scores, which is general enough to accommodate ancestral constraints. The proposed framework exploits oracles for learning structures using decomposable scores, which cannot accommodate ancestral constraints since they are non-decomposable. We show how to empower these oracles by passing them decomposable constraints that they can handle, which are inferred from ancestral constraints that they cannot handle. Empirically, we demonstrate that our approach can be orders-of-magnitude more efficient than alternative frameworks, such as those based on integer linear programming.


Tractable Operations for Arithmetic Circuits of Probabilistic Models

Neural Information Processing Systems

We consider tractable representations of probability distributions and the polytime operations they support. In particular, we consider a recently proposed arithmetic circuit representation, the Probabilistic Sentential Decision Diagram (PSDD). We show that PSDD supports a polytime multiplication operator, while they do not support a polytime operator for summing-out variables. A polytime multiplication operator make PSDDs suitable for a broader class of applications compared to arithmetic circuits, which do not in general support multiplication. As one example, we show that PSDD multiplication leads to a very simple but effective compilation algorithm for probabilistic graphical models: represent each model factor as a PSDD, and then multiply them.