Goto

Collaborating Authors

 Shen, Xudong


Toward Model-centric Heterogeneous Federated Graph Learning: A Knowledge-driven Approach

arXiv.org Artificial Intelligence

Federated graph learning (FGL) has emerged as a promising paradigm for collaborative machine learning, enabling multiple parties to jointly train models while preserving the privacy of raw graph data. However, existing FGL methods often overlook the model-centric heterogeneous FGL (MHtFGL) problem, which arises in real-world applications, such as the aggregation of models from different companies with varying scales and architectures. MHtFGL presents an additional challenge: the diversity of client model architectures hampers common learning and integration of graph representations. To address this issue, we propose the Federated Graph Knowledge Collaboration (FedGKC) framework, comprising two key components: Client-side Self-Mutual Knowledge Distillation, which fosters effective knowledge sharing among clients through copilot models; and Server-side Knowledge-Aware Model Aggregation, which enhances model integration by accounting for the knowledge acquired by clients. Experiments on eight benchmark datasets demonstrate that FedGKC achieves an average accuracy improvement of 3.74% over baseline models in MHtFGL scenarios, while also maintaining excellent performance in homogeneous settings.


MSTS: A Multimodal Safety Test Suite for Vision-Language Models

arXiv.org Artificial Intelligence

Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking.


Introducing v0.5 of the AI Safety Benchmark from MLCommons

arXiv.org Artificial Intelligence

This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.


Finetuning Text-to-Image Diffusion Models for Fairness

arXiv.org Artificial Intelligence

The rapid adoption of text-to-image diffusion models in society underscores an urgent need to address their biases. Without interventions, these biases could propagate a skewed worldview and restrict opportunities for minority groups. In this work, we frame fairness as a distributional alignment problem. Our solution consists of two main technical contributions: (1) a distributional alignment loss that steers specific characteristics of the generated images towards a user-defined target distribution, and (2) adjusted direct finetuning of diffusion model's sampling process (adjusted DFT), which leverages an adjusted gradient to directly optimize losses defined on the generated images. Empirically, our method markedly reduces gender, racial, and their intersectional biases for occupational prompts. Gender bias is significantly reduced even when finetuning just five soft tokens. Crucially, our method supports diverse perspectives of fairness beyond absolute equality, which is demonstrated by controlling age to a $75\%$ young and $25\%$ old distribution while simultaneously debiasing gender and race. Finally, our method is scalable: it can debias multiple concepts at once by simply including these prompts in the finetuning data. We share code and various fair diffusion model adaptors at https://sail-sg.github.io/finetune-fair-diffusion/.


Multimodal Prompt Transformer with Hybrid Contrastive Learning for Emotion Recognition in Conversation

arXiv.org Artificial Intelligence

Emotion Recognition in Conversation (ERC) plays an important role in driving the development of human-machine interaction. Emotions can exist in multiple modalities, and multimodal ERC mainly faces two problems: (1) the noise problem in the cross-modal information fusion process, and (2) the prediction problem of less sample emotion labels that are semantically similar but different categories. To address these issues and fully utilize the features of each modality, we adopted the following strategies: first, deep emotion cues extraction was performed on modalities with strong representation ability, and feature filters were designed as multimodal prompt information for modalities with weak representation ability. Then, we designed a Multimodal Prompt Transformer (MPT) to perform cross-modal information fusion. MPT embeds multimodal fusion information into each attention layer of the Transformer, allowing prompt information to participate in encoding textual features and being fused with multi-level textual information to obtain better multimodal fusion features. Finally, we used the Hybrid Contrastive Learning (HCL) strategy to optimize the model's ability to handle labels with few samples. This strategy uses unsupervised contrastive learning to improve the representation ability of multimodal fusion and supervised contrastive learning to mine the information of labels with few samples. Experimental results show that our proposed model outperforms state-of-the-art models in ERC on two benchmark datasets.


AI and the EU Digital Markets Act: Addressing the Risks of Bigness in Generative AI

arXiv.org Artificial Intelligence

As AI technology advances rapidly, concerns over the risks of bigness in digital markets are also growing. The EU's Digital Markets Act (DMA) aims to address these risks. Still, the current framework may not adequately cover generative AI systems that could become gateways for AI-based services. This paper argues for integrating certain AI software as core platform services and classifying certain developers as gatekeepers under the DMA. We also propose an assessment of gatekeeper obligations to ensure they cover generative AI services. As the EU considers generative AI-specific rules and possible DMA amendments, this paper provides insights towards diversity and openness in generative AI services.


Towards Regulatable AI Systems: Technical Gaps and Policy Opportunities

arXiv.org Artificial Intelligence

There is increasing attention being given to how to regulate AI systems. As governing bodies grapple with what values to encapsulate into regulation, we consider the technical half of the question: To what extent can AI experts vet an AI system for adherence to regulatory requirements? We investigate this question through two public sector procurement checklists, identifying what we can do now, what we should be able to do with technical innovation in AI, and what requirements necessitate a more interdisciplinary approach.


Inverse Scaling: When Bigger Isn't Better

arXiv.org Artificial Intelligence

Work on scaling laws has found that large language models (LMs) show predictable improvements to overall loss with increased scale (model size, training data, and compute). Here, we present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale, e.g., due to flaws in the training objective and data. We present empirical evidence of inverse scaling on 11 datasets collected by running a public contest, the Inverse Scaling Prize, with a substantial prize pool. Through analysis of the datasets, along with other examples found in the literature, we identify four potential causes of inverse scaling: (i) preference to repeat memorized sequences over following in-context instructions, (ii) imitation of undesirable patterns in the training data, (iii) tasks containing an easy distractor task which LMs could focus on, rather than the harder real task, and (iv) correct but misleading few-shot demonstrations of the task. We release the winning datasets at https://inversescaling.com/data to allow for further investigation of inverse scaling. Our tasks have helped drive the discovery of U-shaped and inverted-U scaling trends, where an initial trend reverses, suggesting that scaling trends are less reliable at predicting the behavior of larger-scale models than previously understood. Overall, our results suggest that there are tasks for which increased model scale alone may not lead to progress, and that more careful thought needs to go into the data and objectives for training language models.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.


RL4RS: A Real-World Dataset for Reinforcement Learning based Recommender System

arXiv.org Artificial Intelligence

Reinforcement learning based recommender systems (RL-based RS) aim at learning a good policy from a batch of collected data, by casting recommendations to multi-step decision-making tasks. However, current RL-based RS research commonly has a large reality gap. In this paper, we introduce the first open-source real-world dataset, RL4RS, hoping to replace the artificial datasets and semi-simulated RS datasets previous studies used due to the resource limitation of the RL-based RS domain. Unlike academic RL research, RL-based RS suffers from the difficulties of being well-validated before deployment. We attempt to propose a new systematic evaluation framework, including evaluation of environment simulation, evaluation on environments, counterfactual policy evaluation, and evaluation on environments built from test set. In summary, the RL4RS (Reinforcement Learning for Recommender Systems), a new resource with special concerns on the reality gaps, contains two real-world datasets, data understanding tools, tuned simulation environments, related advanced RL baselines, batch RL baselines, and counterfactual policy evaluation algorithms. The RL4RS suite can be found at https://github.com/fuxiAIlab/RL4RS. In addition to the RL-based recommender systems, we expect the resource to contribute to research in applied reinforcement learning.