Shen, Lei
SEO: Stochastic Experience Optimization for Large Language Models
Xu, Jitao, Zhou, Hongyun, Shen, Lei, Zhu, Conghui, Huang, Jin, Duan, Yitao
Large Language Models (LLMs) can benefit from useful experiences to improve their performance on specific tasks. However, finding helpful experiences for different LLMs is not obvious, since it is unclear what experiences suit specific LLMs. Previous studies intended to automatically find useful experiences using LLMs, while it is difficult to ensure the effectiveness of the obtained experience. In this paper, we propose Stochastic Experience Optimization (SEO), an iterative approach that finds optimized model-specific experience without modifying model parameters through experience update in natural language. In SEO, we propose a stochastic validation method to ensure the update direction of experience, avoiding unavailing updates. Experimental results on three tasks for three LLMs demonstrate that experiences optimized by SEO can achieve consistently improved performance. Further analysis indicates that SEO-optimized experience can generalize to out-of-distribution data, boosting the performance of LLMs on similar tasks.
GEB-1.3B: Open Lightweight Large Language Model
Wu, Jie, Zhu, Yufeng, Shen, Lei, Lu, Xuqing
Recently developed large language models (LLMs) such as ChatGPT, Claude, and Llama have demonstrated impressive abilities, and even surpass human-level performance in several tasks. Despite their success, the resource-intensive demands of these models, requiring significant computational power for both training and inference, limit their deployment to high-performance servers. Additionally, the extensive calculation requirements of the models often lead to increased latency in response times. With the increasing need for LLMs to operate efficiently on CPUs, research about lightweight models that are optimized for CPU inference has emerged. In this work, we introduce GEB-1.3B, a lightweight LLM trained on 550 billion tokens in both Chinese and English languages. We employ novel training techniques, including ROPE, Group-Query-Attention, and FlashAttention-2, to accelerate training while maintaining model performance. Additionally, we fine-tune the model using 10 million samples of instruction data to enhance alignment. GEB-1.3B exhibits outstanding performance on general benchmarks such as MMLU, C-Eval, and CMMLU, outperforming comparative models such as MindLLM-1.3B and TinyLLaMA-1.1B. Notably, the FP32 version of GEB-1.3B achieves commendable inference times on CPUs, with ongoing efforts to further enhance speed through advanced quantization techniques. The release of GEB-1.3B as an open-source model marks a significant contribution to the development of lightweight LLMs, promising to foster further research and innovation in the field.
A Group Fairness Lens for Large Language Models
Bi, Guanqun, Shen, Lei, Xie, Yuqiang, Cao, Yanan, Zhu, Tiangang, He, Xiaodong
The rapid advancement of large language models has revolutionized various applications but also raised crucial concerns about their potential to perpetuate biases and unfairness when deployed in social media contexts. Evaluating LLMs' potential biases and fairness has become crucial, as existing methods rely on limited prompts focusing on just a few groups, lacking a comprehensive categorical perspective. In this paper, we propose evaluating LLM biases from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFair, encapsulating target-attribute combinations across multiple dimensions. In addition, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLM from a group fairness perspective, we pioneer a novel chain-of-thought method GF-Think to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias in LLMs to achieve fairness.
Differentially Private Natural Language Models: Recent Advances and Future Directions
Hu, Lijie, Habernal, Ivan, Shen, Lei, Wang, Di
Recent developments in deep learning have led to great success in various natural language processing (NLP) tasks. However, these applications may involve data that contain sensitive information. Therefore, how to achieve good performance while also protecting the privacy of sensitive data is a crucial challenge in NLP. To preserve privacy, Differential Privacy (DP), which can prevent reconstruction attacks and protect against potential side knowledge, is becoming a de facto technique for private data analysis. In recent years, NLP in DP models (DP-NLP) has been studied from different perspectives, which deserves a comprehensive review. In this paper, we provide the first systematic review of recent advances in DP deep learning models in NLP. In particular, we first discuss some differences and additional challenges of DP-NLP compared with the standard DP deep learning. Then, we investigate some existing work on DP-NLP and present its recent developments from three aspects: gradient perturbation based methods, embedding vector perturbation based methods, and ensemble model based methods. We also discuss some challenges and future directions.
CECT: Controllable Ensemble CNN and Transformer for COVID-19 Image Classification
Liu, Zhaoshan, Shen, Lei
The convolutional neural network (CNN) and transformer are two of the most widely implemented models in the computer vision field. However, the former (latter) one mainly captures local (global) features only. To address the limitation in model performance caused by the lack of features, we develop a novel classification network CECT by controllable ensemble CNN and transformer. CECT is composed of a convolutional encoder block, a transposed-convolutional decoder block, and a transformer classification block. Different from existing methods, our CECT can capture features at both multi-local and global scales without any bells and whistles. Moreover, the contribution of local features at different scales can be controlled with the proposed ensemble coefficients. We evaluate CECT on two public COVID-19 datasets and it outperforms existing state-of-the-art methods. With remarkable feature capture ability, we believe CECT can be extended to other medical image classification scenarios as a diagnosis assistant. Code is available at https://github.com/NUS-Tim/CECT.
DiffusEmp: A Diffusion Model-Based Framework with Multi-Grained Control for Empathetic Response Generation
Bi, Guanqun, Shen, Lei, Cao, Yanan, Chen, Meng, Xie, Yuqiang, Lin, Zheng, He, Xiaodong
Empathy is a crucial factor in open-domain conversations, which naturally shows one's caring and understanding to others. Though several methods have been proposed to generate empathetic responses, existing works often lead to monotonous empathy that refers to generic and safe expressions. In this paper, we propose to use explicit control to guide the empathy expression and design a framework DiffusEmp based on conditional diffusion language model to unify the utilization of dialogue context and attribute-oriented control signals. Specifically, communication mechanism, intent, and semantic frame are imported as multi-grained signals that control the empathy realization from coarse to fine levels. We then design a specific masking strategy to reflect the relationship between multi-grained signals and response tokens, and integrate it into the diffusion model to influence the generative process. Experimental results on a benchmark dataset EmpatheticDialogue show that our framework outperforms competitive baselines in terms of controllability, informativeness, and diversity without the loss of context-relatedness.
Is Translation Helpful? An Empirical Analysis of Cross-Lingual Transfer in Low-Resource Dialog Generation
Shen, Lei, Yu, Shuai, Shen, Xiaoyu
Cross-lingual transfer is important for developing high-quality chatbots in multiple languages due to the strongly imbalanced distribution of language resources. A typical approach is to leverage off-the-shelf machine translation (MT) systems to utilize either the training corpus or developed models from high-resource languages. In this work, we investigate whether it is helpful to utilize MT at all in this task. To do so, we simulate a low-resource scenario assuming access to limited Chinese dialog data in the movie domain and large amounts of English dialog data from multiple domains. Experiments show that leveraging English dialog corpora can indeed improve the naturalness, relevance and cross-domain transferability in Chinese. However, directly using English dialog corpora in its original form, surprisingly, is better than using its translated version. As the topics and wording habits in daily conversations are strongly culture-dependent, MT can reinforce the bias from high-resource languages, yielding unnatural generations in the target language. Considering the cost of translating large amounts of text and the strong effects of the translation quality, we suggest future research should rather focus on utilizing the original English data for cross-lingual transfer in dialog generation. We perform extensive human evaluations and ablation studies. The analysis results, together with the collected dataset, are presented to draw attention towards this area and benefit future research.
CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evaluations on HumanEval-X
Zheng, Qinkai, Xia, Xiao, Zou, Xu, Dong, Yuxiao, Wang, Shan, Xue, Yufei, Wang, Zihan, Shen, Lei, Wang, Andi, Li, Yang, Su, Teng, Yang, Zhilin, Tang, Jie
Large pre-trained code generation models, such as OpenAI Codex, can generate syntax- and function-correct code, making the coding of programmers more productive and our pursuit of artificial general intelligence closer. In this paper, we introduce CodeGeeX, a multilingual model with 13 billion parameters for code generation. CodeGeeX is pre-trained on 850 billion tokens of 23 programming languages as of June 2022. Our extensive experiments suggest that CodeGeeX outperforms multilingual code models of similar scale for both the tasks of code generation and translation on HumanEval-X. Building upon HumanEval (Python only), we develop the HumanEval-X benchmark for evaluating multilingual models by hand-writing the solutions in C++, Java, JavaScript, and Go. In addition, we build CodeGeeX-based extensions on Visual Studio Code, JetBrains, and Cloud Studio, generating 4.7 billion tokens for tens of thousands of active users per week. Our user study demonstrates that CodeGeeX can help to increase coding efficiency for 83.4% of its users. Finally, CodeGeeX is publicly accessible and in Sep. 2022, we open-sourced its code, model weights (the version of 850B tokens), API, extensions, and HumanEval-X at https://github.com/THUDM/CodeGeeX.
Coordinating Cross-modal Distillation for Molecular Property Prediction
Zhang, Hao, Zhang, Nan, Zhang, Ruixin, Shen, Lei, Zhang, Yingyi, Liu, Meng
In recent years, molecular graph representation learning (GRL) has drawn much more attention in molecular property prediction (MPP) problems. The existing graph methods have demonstrated that 3D geometric information is significant for better performance in MPP. However, accurate 3D structures are often costly and time-consuming to obtain, limiting the large-scale application of GRL. It is an intuitive solution to train with 3D to 2D knowledge distillation and predict with only 2D inputs. But some challenging problems remain open for 3D to 2D distillation. One is that the 3D view is quite distinct from the 2D view, and the other is that the gradient magnitudes of atoms in distillation are discrepant and unstable due to the variable molecular size. To address these challenging problems, we exclusively propose a distillation framework that contains global molecular distillation and local atom distillation. We also provide a theoretical insight to justify how to coordinate atom and molecular information, which tackles the drawback of variable molecular size for atom information distillation. Experimental results on two popular molecular datasets demonstrate that our proposed model achieves superior performance over other methods. Specifically, on the largest MPP dataset PCQM4Mv2 served as an "ImageNet Large Scale Visual Recognition Challenge" in the field of graph ML, the proposed method achieved a 6.9% improvement compared with the best works. And we obtained fourth place with the MAE of 0.0734 on the test-challenge set for OGB-LSC 2022 Graph Regression Task. We will release the code soon.
MNER-QG: An End-to-End MRC framework for Multimodal Named Entity Recognition with Query Grounding
Jia, Meihuizi, Shen, Lei, Shen, Xin, Liao, Lejian, Chen, Meng, He, Xiaodong, Chen, Zhendong, Li, Jiaqi
Multimodal named entity recognition (MNER) is a critical step in information extraction, which aims to detect entity spans and classify them to corresponding entity types given a sentence-image pair. Existing methods either (1) obtain named entities with coarse-grained visual clues from attention mechanisms, or (2) first detect fine-grained visual regions with toolkits and then recognize named entities. However, they suffer from improper alignment between entity types and visual regions or error propagation in the two-stage manner, which finally imports irrelevant visual information into texts. In this paper, we propose a novel end-to-end framework named MNER-QG that can simultaneously perform MRC-based multimodal named entity recognition and query grounding. Specifically, with the assistance of queries, MNER-QG can provide prior knowledge of entity types and visual regions, and further enhance representations of both texts and images. To conduct the query grounding task, we provide manual annotations and weak supervisions that are obtained via training a highly flexible visual grounding model with transfer learning. We conduct extensive experiments on two public MNER datasets, Twitter2015 and Twitter2017. Experimental results show that MNER-QG outperforms the current state-of-the-art models on the MNER task, and also improves the query grounding performance.