Goto

Collaborating Authors

 Shen, Hong


A Survey on Human-Centered Evaluation of Explainable AI Methods in Clinical Decision Support Systems

arXiv.org Artificial Intelligence

Explainable AI (XAI) has become a crucial component of Clinical Decision Support Systems (CDSS) to enhance transparency, trust, and clinical adoption. However, while many XAI methods have been proposed, their effectiveness in real-world medical settings remains underexplored. This paper provides a survey of human-centered evaluations of Explainable AI methods in Clinical Decision Support Systems. By categorizing existing works based on XAI methodologies, evaluation frameworks, and clinical adoption challenges, we offer a structured understanding of the landscape. Our findings reveal key challenges in the integration of XAI into healthcare workflows and propose a structured framework to align the evaluation methods of XAI with the clinical needs of stakeholders.


Minion: A Technology Probe for Resolving Value Conflicts through Expert-Driven and User-Driven Strategies in AI Companion Applications

arXiv.org Artificial Intelligence

AI companions based on large language models can role-play and converse very naturally. When value conflicts arise between the AI companion and the user, it may offend or upset the user. Yet, little research has examined such conflicts. We first conducted a formative study that analyzed 151 user complaints about conflicts with AI companions, providing design implications for our study. Based on these, we created Minion, a technology probe to help users resolve human-AI value conflicts. Minion applies a user-empowerment intervention method that provides suggestions by combining expert-driven and user-driven conflict resolution strategies. We conducted a technology probe study, creating 40 value conflict scenarios on Character.AI and Talkie. 22 participants completed 274 tasks and successfully resolved conflicts 94.16% of the time. We summarize user responses, preferences, and needs in resolving value conflicts, and propose design implications to reduce conflicts and empower users to resolve them more effectively.


PATIENT-{\Psi}: Using Large Language Models to Simulate Patients for Training Mental Health Professionals

arXiv.org Artificial Intelligence

Mental illness remains one of the most critical public health issues. Despite its importance, many mental health professionals highlight a disconnect between their training and actual real-world patient practice. To help bridge this gap, we propose PATIENT-{\Psi}, a novel patient simulation framework for cognitive behavior therapy (CBT) training. To build PATIENT-{\Psi}, we construct diverse patient cognitive models based on CBT principles and use large language models (LLMs) programmed with these cognitive models to act as a simulated therapy patient. We propose an interactive training scheme, PATIENT-{\Psi}-TRAINER, for mental health trainees to practice a key skill in CBT -- formulating the cognitive model of the patient -- through role-playing a therapy session with PATIENT-{\Psi}. To evaluate PATIENT-{\Psi}, we conducted a comprehensive user study of 13 mental health trainees and 20 experts. The results demonstrate that practice using PATIENT-{\Psi}-TRAINER enhances the perceived skill acquisition and confidence of the trainees beyond existing forms of training such as textbooks, videos, and role-play with non-patients. Based on the experts' perceptions, PATIENT-{\Psi} is perceived to be closer to real patient interactions than GPT-4, and PATIENT-{\Psi}-TRAINER holds strong promise to improve trainee competencies. Our code and data are released at \url{https://github.com/ruiyiw/patient-psi}.


Deep Learning Predicts Biomarker Status and Discovers Related Histomorphology Characteristics for Low-Grade Glioma

arXiv.org Artificial Intelligence

Biomarker detection is an indispensable part in the diagnosis and treatment of low-grade glioma (LGG). However, current LGG biomarker detection methods rely on expensive and complex molecular genetic testing, for which professionals are required to analyze the results, and intra-rater variability is often reported. To overcome these challenges, we propose an interpretable deep learning pipeline, a Multi-Biomarker Histomorphology Discoverer (Multi-Beholder) model based on the multiple instance learning (MIL) framework, to predict the status of five biomarkers in LGG using only hematoxylin and eosin-stained whole slide images and slide-level biomarker status labels. Specifically, by incorporating the one-class classification into the MIL framework, accurate instance pseudo-labeling is realized for instance-level supervision, which greatly complements the slide-level labels and improves the biomarker prediction performance. Multi-Beholder demonstrates superior prediction performance and generalizability for five LGG biomarkers (AUROC=0.6469-0.9735) in two cohorts (n=607) with diverse races and scanning protocols. Moreover, the excellent interpretability of Multi-Beholder allows for discovering the quantitative and qualitative correlations between biomarker status and histomorphology characteristics. Our pipeline not only provides a novel approach for biomarker prediction, enhancing the applicability of molecular treatments for LGG patients but also facilitates the discovery of new mechanisms in molecular functionality and LGG progression.


Understanding Frontline Workers' and Unhoused Individuals' Perspectives on AI Used in Homeless Services

arXiv.org Artificial Intelligence

Recent years have seen growing adoption of AI-based decision-support systems (ADS) in homeless services, yet we know little about stakeholder desires and concerns surrounding their use. In this work, we aim to understand impacted stakeholders' perspectives on a deployed ADS that prioritizes scarce housing resources. We employed AI lifecycle comicboarding, an adapted version of the comicboarding method, to elicit stakeholder feedback and design ideas across various components of an AI system's design. We elicited feedback from county workers who operate the ADS daily, service providers whose work is directly impacted by the ADS, and unhoused individuals in the region. Our participants shared concerns and design suggestions around the AI system's overall objective, specific model design choices, dataset selection, and use in deployment. Our findings demonstrate that stakeholders, even without AI knowledge, can provide specific and critical feedback on an AI system's design and deployment, if empowered to do so.


Understanding Practices, Challenges, and Opportunities for User-Engaged Algorithm Auditing in Industry Practice

arXiv.org Artificial Intelligence

Recent years have seen growing interest among both researchers and practitioners in user-engaged approaches to algorithm auditing, which directly engage users in detecting problematic behaviors in algorithmic systems. However, we know little about industry practitioners' current practices and challenges around user-engaged auditing, nor what opportunities exist for them to better leverage such approaches in practice. To investigate, we conducted a series of interviews and iterative co-design activities with practitioners who employ user-engaged auditing approaches in their work. Our findings reveal several challenges practitioners face in appropriately recruiting and incentivizing user auditors, scaffolding user audits, and deriving actionable insights from user-engaged audit reports. Furthermore, practitioners shared organizational obstacles to user-engaged auditing, surfacing a complex relationship between practitioners and user auditors. Based on these findings, we discuss opportunities for future HCI research to help realize the potential (and the mitigate risks) of user-engaged auditing in industry practice.


Value Cards: An Educational Toolkit for Teaching Social Impacts of Machine Learning through Deliberation

arXiv.org Artificial Intelligence

Recently, there have been increasing calls for computer science curricula to complement existing technical training with topics related to Fairness, Accountability, Transparency, and Ethics. In this paper, we present Value Card, an educational toolkit to inform students and practitioners of the social impacts of different machine learning models via deliberation. This paper presents an early use of our approach in a college-level computer science course. Through an in-class activity, we report empirical data for the initial effectiveness of our approach. Our results suggest that the use of the Value Cards toolkit can improve students' understanding of both the technical definitions and trade-offs of performance metrics and apply them in real-world contexts, help them recognize the significance of considering diverse social values in the development of deployment of algorithmic systems, and enable them to communicate, negotiate and synthesize the perspectives of diverse stakeholders. Our study also demonstrates a number of caveats we need to consider when using the different variants of the Value Cards toolkit. Finally, we discuss the challenges as well as future applications of our approach.


NEMR: Network Embedding on Metric of Relation

arXiv.org Artificial Intelligence

Network embedding maps the nodes of a given network into a low-dimensional space such that the semantic similarities among the nodes can be effectively inferred. Most existing approaches use inner-product of node embedding to measure the similarity between nodes leading to the fact that they lack the capacity to capture complex relationships among nodes. Besides, they take the path in the network just as structural auxiliary information when inferring node embeddings, while paths in the network are formed with rich user informations which are semantically relevant and cannot be ignored. In this paper, We propose a novel method called Network Embedding on the Metric of Relation, abbreviated as NEMR, which can learn the embeddings of nodes in a relational metric space efficiently. First, our NEMR models the relationships among nodes in a metric space with deep learning methods including variational inference that maps the relationship of nodes to a gaussian distribution so as to capture the uncertainties. Secondly, our NEMR considers not only the equivalence of multiple-paths but also the natural order of a single-path when inferring embeddings of nodes, which makes NEMR can capture the multiple relationships among nodes since multiple paths contain rich user information, e.g., age, hobby and profession. Experimental results on several public datasets show that the NEMR outperforms the state-of-the-art methods on relevant inference tasks including link prediction and node classification.