Goto

Collaborating Authors

 Shen, Chao


Revisiting Training-Inference Trigger Intensity in Backdoor Attacks

arXiv.org Artificial Intelligence

Backdoor attacks typically place a specific trigger on certain training data, such that the model makes prediction errors on inputs with that trigger during inference. Despite the core role of the trigger, existing studies have commonly believed a perfect match between training-inference triggers is optimal. In this paper, for the first time, we systematically explore the training-inference trigger relation, particularly focusing on their mismatch, based on a Training-Inference Trigger Intensity Manipulation (TITIM) workflow. TITIM specifically investigates the training-inference trigger intensity, such as the size or the opacity of a trigger, and reveals new insights into trigger generalization and overfitting. These new insights challenge the above common belief by demonstrating that the training-inference trigger mismatch can facilitate attacks in two practical scenarios, posing more significant security threats than previously thought. First, when the inference trigger is fixed, using training triggers with mixed intensities leads to stronger attacks than using any single intensity. For example, on CIFAR-10 with ResNet-18, mixing training triggers with 1.0 and 0.1 opacities improves the worst-case attack success rate (ASR) (over different testing opacities) of the best single-opacity attack from 10.61\% to 92.77\%. Second, intentionally using certain mismatched training-inference triggers can improve the attack stealthiness, i.e., better bypassing defenses. For example, compared to the training/inference intensity of 1.0/1.0, using 1.0/0.7 decreases the area under the curve (AUC) of the Scale-Up defense from 0.96 to 0.62, while maintaining a high attack ASR (99.65\% vs. 91.62\%). The above new insights are validated to be generalizable across different backdoor attacks, models, datasets, tasks, and (digital/physical) domains.


Exposing Product Bias in LLM Investment Recommendation

arXiv.org Artificial Intelligence

Large language models (LLMs), as a new generation of recommendation engines, possess powerful summarization and data analysis capabilities, surpassing traditional recommendation systems in both scope and performance. One promising application is investment recommendation. In this paper, we reveal a novel product bias in LLM investment recommendation, where LLMs exhibit systematic preferences for specific products. Such preferences can subtly influence user investment decisions, potentially leading to inflated valuations of products and financial bubbles, posing risks to both individual investors and market stability. To comprehensively study the product bias, we develop an automated pipeline to create a dataset of 567,000 samples across five asset classes (stocks, mutual funds, cryptocurrencies, savings, and portfolios). With this dataset, we present the bf first study on product bias in LLM investment recommendations. Our findings reveal that LLMs exhibit clear product preferences, such as certain stocks (e.g., `AAPL' from Apple and `MSFT' from Microsoft). Notably, this bias persists even after applying debiasing techniques. We urge AI researchers to take heed of the product bias in LLM investment recommendations and its implications, ensuring fairness and security in the digital space and market.


Holistic Audit Dataset Generation for LLM Unlearning via Knowledge Graph Traversal and Redundancy Removal

arXiv.org Artificial Intelligence

In recent years, Large Language Models (LLMs) have faced increasing demands to selectively remove sensitive information, protect privacy, and comply with copyright regulations through unlearning, by Machine Unlearning. While evaluating unlearning effectiveness is crucial, existing benchmarks are limited in scale and comprehensiveness, typically containing only a few hundred test cases. We identify two critical challenges in generating holistic audit datasets: ensuring audit adequacy and handling knowledge redundancy between forget and retain dataset. To address these challenges, we propose HANKER, an automated framework for holistic audit dataset generation leveraging knowledge graphs to achieve fine-grained coverage and eliminate redundant knowledge. Applying HANKER to the popular MUSE benchmark, we successfully generated over 69,000 and 111,000 audit cases for the News and Books datasets respectively, identifying thousands of knowledge memorization instances that the previous benchmark failed to detect. Our empirical analysis uncovers how knowledge redundancy significantly skews unlearning effectiveness metrics, with redundant instances artificially inflating the observed memorization measurements ROUGE from 19.7% to 26.1% and Entailment Scores from 32.4% to 35.2%, highlighting the necessity of systematic deduplication for accurate assessment.


Iron Sharpens Iron: Defending Against Attacks in Machine-Generated Text Detection with Adversarial Training

arXiv.org Artificial Intelligence

Machine-generated Text (MGT) detection is crucial for regulating and attributing online texts. While the existing MGT detectors achieve strong performance, they remain vulnerable to simple perturbations and adversarial attacks. To build an effective defense against malicious perturbations, we view MGT detection from a threat modeling perspective, that is, analyzing the model's vulnerability from an adversary's point of view and exploring effective mitigations. To this end, we introduce an adversarial framework for training a robust MGT detector, named GREedy Adversary PromoTed DefendER (GREATER). The GREATER consists of two key components: an adversary GREATER-A and a detector GREATER-D. The GREATER-D learns to defend against the adversarial attack from GREATER-A and generalizes the defense to other attacks. GREATER-A identifies and perturbs the critical tokens in embedding space, along with greedy search and pruning to generate stealthy and disruptive adversarial examples. Besides, we update the GREATER-A and GREATER-D synchronously, encouraging the GREATER-D to generalize its defense to different attacks and varying attack intensities. Our experimental results across 9 text perturbation strategies and 5 adversarial attacks show that our GREATER-D reduces the Attack Success Rate (ASR) by 10.61% compared with SOTA defense methods while our GREATER-A is demonstrated to be more effective and efficient than SOTA attack approaches.


Unveiling Provider Bias in Large Language Models for Code Generation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have emerged as the new recommendation engines, outperforming traditional methods in both capability and scope, particularly in code generation applications. Our research reveals a novel provider bias in LLMs, namely without explicit input prompts, these models show systematic preferences for services from specific providers in their recommendations (e.g., favoring Google Cloud over Microsoft Azure). This bias holds significant implications for market dynamics and societal equilibrium, potentially promoting digital monopolies. It may also deceive users and violate their expectations, leading to various consequences. This paper presents the first comprehensive empirical study of provider bias in LLM code generation. We develop a systematic methodology encompassing an automated pipeline for dataset generation, incorporating 6 distinct coding task categories and 30 real-world application scenarios. Our analysis encompasses over 600,000 LLM-generated responses across seven state-of-the-art models, utilizing approximately 500 million tokens (equivalent to \$5,000+ in computational costs). The study evaluates both the generated code snippets and their embedded service provider selections to quantify provider bias. Additionally, we conduct a comparative analysis of seven debiasing prompting techniques to assess their efficacy in mitigating these biases. Our findings demonstrate that LLMs exhibit significant provider preferences, predominantly favoring services from Google and Amazon, and can autonomously modify input code to incorporate their preferred providers without users' requests. Notably, we observe discrepancies between providers recommended in conversational contexts versus those implemented in generated code. The complete dataset and analysis results are available in our repository.


CALM: Curiosity-Driven Auditing for Large Language Models

arXiv.org Artificial Intelligence

Auditing Large Language Models (LLMs) is a crucial and challenging task. In this study, we focus on auditing black-box LLMs without access to their parameters, only to the provided service. We treat this type of auditing as a black-box optimization problem where the goal is to automatically uncover input-output pairs of the target LLMs that exhibit illegal, immoral, or unsafe behaviors. For instance, we may seek a non-toxic input that the target LLM responds to with a toxic output or an input that induces the hallucinative response from the target LLM containing politically sensitive individuals. This black-box optimization is challenging due to the scarcity of feasible points, the discrete nature of the prompt space, and the large search space. To address these challenges, we propose Curiosity-Driven Auditing for Large Language Models (CALM), which uses intrinsically motivated reinforcement learning to finetune an LLM as the auditor agent to uncover potential harmful and biased input-output pairs of the target LLM. CALM successfully identifies derogatory completions involving celebrities and uncovers inputs that elicit specific names under the black-box setting. This work offers a promising direction for auditing black-box LLMs. Our code is available at https://github.com/x-zheng16/CALM.git.


Improving Integrated Gradient-based Transferable Adversarial Examples by Refining the Integration Path

arXiv.org Artificial Intelligence

Transferable adversarial examples are known to cause threats in practical, black-box attack scenarios. A notable approach to improving transferability is using integrated gradients (IG), originally developed for model interpretability. In this paper, we find that existing IG-based attacks have limited transferability due to their naive adoption of IG in model interpretability. To address this limitation, we focus on the IG integration path and refine it in three aspects: multiplicity, monotonicity, and diversity, supported by theoretical analyses. We propose the Multiple Monotonic Diversified Integrated Gradients (MuMoDIG) attack, which can generate highly transferable adversarial examples on different CNN and ViT models and defenses. Experiments validate that MuMoDIG outperforms the latest IG-based attack by up to 37.3\% and other state-of-the-art attacks by 8.4\%. In general, our study reveals that migrating established techniques to improve transferability may require non-trivial efforts. Code is available at \url{https://github.com/RYC-98/MuMoDIG}.


Speech-Forensics: Towards Comprehensive Synthetic Speech Dataset Establishment and Analysis

arXiv.org Artificial Intelligence

Detecting synthetic from real speech is increasingly crucial due to the risks of misinformation and identity impersonation. While various datasets for synthetic speech analysis have been developed, they often focus on specific areas, limiting their utility for comprehensive research. To fill this gap, we propose the Speech-Forensics dataset by extensively covering authentic, synthetic, and partially forged speech samples that include multiple segments synthesized by different high-quality algorithms. Moreover, we propose a TEmporal Speech LocalizaTion network, called TEST, aiming at simultaneously performing authenticity detection, multiple fake segments localization, and synthesis algorithms recognition, without any complex post-processing. TEST effectively integrates LSTM and Transformer to extract more powerful temporal speech representations and utilizes dense prediction on multi-scale pyramid features to estimate the synthetic spans. Our model achieves an average mAP of 83.55% and an EER of 5.25% at the utterance level. At the segment level, it attains an EER of 1.07% and a 92.19% F1 score. These results highlight the model's robust capability for a comprehensive analysis of synthetic speech, offering a promising avenue for future research and practical applications in this field.


Can Targeted Clean-Label Poisoning Attacks Generalize?

arXiv.org Artificial Intelligence

Targeted poisoning attacks aim to compromise the model's prediction on specific target samples. In a common clean-label setting, they are achieved by slightly perturbing a subset of training samples given access to those specific targets. Despite continuous efforts, it remains unexplored whether such attacks can generalize to unknown variations of those targets. In this paper, we take the first step to systematically study this generalization problem. Observing that the widely adopted, cosine similarity-based attack exhibits limited generalizability, we propose a well-generalizable attack that leverages both the direction and magnitude of model gradients. In particular, we explore diverse target variations, such as an object with varied viewpoints and an animal species with distinct appearances. Extensive experiments across various generalization scenarios demonstrate that our method consistently achieves the best attack effectiveness. For example, our method outperforms the cosine similarity-based attack by 20.95% in attack success rate with similar overall accuracy, averaged over four models on two image benchmark datasets. The code is available at https://github.com/jiaangk/generalizable_tcpa


In-situ Self-optimization of Quantum Dot Emission for Lasers by Machine-Learning Assisted Epitaxy

arXiv.org Artificial Intelligence

Traditional methods for optimizing light source emissions rely on a time-consuming trial-and-error approach. While in-situ optimization of light source gain media emission during growth is ideal, it has yet to be realized. In this work, we integrate in-situ reflection high-energy electron diffraction (RHEED) with machine learning (ML) to correlate the surface reconstruction with the photoluminescence (PL) of InAs/GaAs quantum dots (QDs), which serve as the active region of lasers. A lightweight ResNet-GLAM model is employed for the real-time processing of RHEED data as input, enabling effective identification of optical performance. This approach guides the dynamic optimization of growth parameters, allowing real-time feedback control to adjust the QDs emission for lasers. We successfully optimized InAs QDs on GaAs substrates, with a 3.2-fold increase in PL intensity and a reduction in full width at half maximum (FWHM) from 36.69 meV to 28.17 meV under initially suboptimal growth conditions. Our automated, in-situ self-optimized lasers with 5-layer InAs QDs achieved electrically pumped continuous-wave operation at 1240 nm with a low threshold current of 150 A/cm2 at room temperature, an excellent performance comparable to samples grown through traditional manual multi-parameter optimization methods. These results mark a significant step toward intelligent, low-cost, and reproductive light emitters production.