Shell, Dylan A.
Limits of specifiability for sensor-based robotic planning tasks
Sakcak, Basak, Shell, Dylan A., O'Kane, Jason M.
There is now a large body of techniques, many based on formal methods, for describing and realizing complex robotics tasks, including those involving a variety of rich goals and time-extended behavior. This paper explores the limits of what sorts of tasks are specifiable, examining how the precise grounding of specifications, that is, whether the specification is given in terms of the robot's states, its actions and observations, its knowledge, or some other information,is crucial to whether a given task can be specified. While prior work included some description of particular choices for this grounding, our contribution treats this aspect as a first-class citizen: we introduce notation to deal with a large class of problems, and examine how the grounding affects what tasks can be posed. The results demonstrate that certain classes of tasks are specifiable under different combinations of groundings.
A Model for Optimal Resilient Planning Subject to Fallible Actuators
Baldes, Kyle, Chaudhuri, Diptanil, O'Kane, Jason M., Shell, Dylan A.
Robots incurring component failures ought to adapt their behavior to best realize still-attainable goals under reduced capacity. We formulate the problem of planning with actuators known a priori to be susceptible to failure within the Markov Decision Processes (MDP) framework. The model captures utilization-driven malfunction and state-action dependent likelihoods of actuator failure in order to enable reasoning about potential impairment and the long-term implications of impoverished future control. This leads to behavior differing qualitatively from plans which ignore failure. As actuators malfunction, there are combinatorially many configurations which can arise. We identify opportunities to save computation through re-use, exploiting the observation that differing configurations yield closely related problems. Our results show how strategic solutions are obtained so robots can respond when failures do occur -- for instance, in prudently scheduling utilization in order to keep critical actuators in reserve.
A general class of combinatorial filters that can be minimized efficiently
Zhang, Yulin, Shell, Dylan A.
State minimization of combinatorial filters is a fundamental problem that arises, for example, in building cheap, resource-efficient robots. But exact minimization is known to be NP-hard. This paper conducts a more nuanced analysis of this hardness than up till now, and uncovers two factors which contribute to this complexity. We show each factor is a distinct source of the problem's hardness and are able, thereby, to shed some light on the role played by (1) structure of the graph that encodes compatibility relationships, and (2) determinism-enforcing constraints. Just as a line of prior work has sought to introduce additional assumptions and identify sub-classes that lead to practical state reduction, we next use this new, sharper understanding to explore special cases for which exact minimization is efficient. We introduce a new algorithm for constraint repair that applies to a large sub-class of filters, subsuming three distinct special cases for which the possibility of optimal minimization in polynomial time was known earlier. While the efficiency in each of these three cases previously appeared to stem from seemingly dissimilar properties, when seen through the lens of the present work, their commonality now becomes clear. We also provide entirely new families of filters that are efficiently reducible.
Optimizing pre-scheduled, intermittently-observed MDPs
Zhong, Patrick, Rossi, Federico, Shell, Dylan A.
A challenging category of robotics problems arises when sensing incurs substantial costs. This paper examines settings in which a robot wishes to limit its observations of state, for instance, motivated by specific considerations of energy management, stealth, or implicit coordination. We formulate the problem of planning under uncertainty when the robot's observations are intermittent but their timing is known via a pre-declared schedule. After having established the appropriate notion of an optimal policy for such settings, we tackle the problem of joint optimization of the cumulative execution cost and the number of state observations, both in expectation under discounts. To approach this multi-objective optimization problem, we introduce an algorithm that can identify the Pareto front for a class of schedules that are advantageous in the discounted setting. The algorithm proceeds in an accumulative fashion, prepending additions to a working set of schedules and then computing incremental changes to the value functions. Because full exhaustive construction becomes computationally prohibitive for moderate-sized problems, we propose a filtering approach to prune the working set. Empirical results demonstrate that this filtering is effective at reducing computation while incurring only negligible reduction in quality. In summarizing our findings, we provide a characterization of the run-time vs quality trade-off involved.
A fixed-parameter tractable algorithm for combinatorial filter reduction
Zhang, Yulin, Shell, Dylan A.
What is the minimal information that a robot must retain to achieve its task? To design economical robots, the literature dealing with reduction of combinatorial filters approaches this problem algorithmically. As lossless state compression is NP-hard, prior work has examined, along with minimization algorithms, a variety of special cases in which specific properties enable efficient solution. Complementing those findings, this paper refines the present understanding from the perspective of parameterized complexity. We give a fixed-parameter tractable algorithm for the general reduction problem by exploiting a transformation into minimal clique covering. The transformation introduces new constraints that arise from sequential dependencies encoded within the input filter -- some of these constraints can be repaired, others are treated through enumeration. Through this approach, we identify parameters affecting filter reduction that are based upon inter-constraint couplings (expressed as a notion of their height and width), which add to the structural parameters present in the unconstrained problem of minimal clique covering.
Sensor selection for fine-grained behavior verification that respects privacy (extended version)
Phatak, Rishi, Shell, Dylan A.
A useful capability is that of classifying some agent's behavior using data from a sequence, or trace, of sensor measurements. The sensor selection problem involves choosing a subset of available sensors to ensure that, when generated, observation traces will contain enough information to determine whether the agent's activities match some pattern. In generalizing prior work, this paper studies a formulation in which multiple behavioral itineraries may be supplied, with sensors selected to distinguish between behaviors. This allows one to pose fine-grained questions, e.g., to position the agent's activity on a spectrum. In addition, with multiple itineraries, one can also ask about choices of sensors where some behavior is always plausibly concealed by (or mistaken for) another. Using sensor ambiguity to limit the acquisition of knowledge is a strong privacy guarantee, a form of guarantee which some earlier work examined under formulations distinct from our inter-itinerary conflation approach. By concretely formulating privacy requirements for sensor selection, this paper connects both lines of work in a novel fashion: privacy-where there is a bound from above, and behavior verification-where sensors choices are bounded from below. We examine the worst-case computational complexity that results from both types of bounds, proving that upper bounds are more challenging under standard computational complexity assumptions. The problem is intractable in general, but we introduce an approach to solving this problem that can exploit interrelationships between constraints, and identify opportunities for optimizations. Case studies are presented to demonstrate the usefulness and scalability of our proposed solution, and to assess the impact of the optimizations.
Motion Planning for a Pair of Tethered Robots
Teshnizi, Reza H., Shell, Dylan A.
Considering an environment containing polygonal obstacles, we address the problem of planning motions for a pair of planar robots connected to one another via a cable of limited length. Much like prior problems with a single robot connected via a cable to a fixed base, straight line-of-sight visibility plays an important role. The present paper shows how the reduced visibility graph provides a natural discretization and captures the essential topological considerations very effectively for the two robot case as well. Unlike the single robot case, however, the bounded cable length introduces considerations around coordination (or equivalently, when viewed from the point of view of a centralized planner, relative timing) that complicates the matter. Indeed, the paper has to introduce a rather more involved formalization than prior single-robot work in order to establish the core theoretical result -- a theorem permitting the problem to be cast as one of finding paths rather than trajectories. Once affirmed, the planning problem reduces to a straightforward graph search with an elegant representation of the connecting cable, demanding only a few extra ancillary checks that ensure sufficiency of cable to guarantee feasibility of the solution. We describe our implementation of A${}^\star$ search, and report experimental results. Lastly, we prescribe an optimal execution for the solutions provided by the algorithm.
Accelerating combinatorial filter reduction through constraints
Zhang, Yulin, Rahmani, Hazhar, Shell, Dylan A., O'Kane, Jason M.
Reduction of combinatorial filters involves compressing state representations that robots use. Such optimization arises in automating the construction of minimalist robots. But exact combinatorial filter reduction is an NP-complete problem and all current techniques are either inexact or formalized with exponentially many constraints. This paper proposes a new formalization needing only a polynomial number of constraints, and characterizes these constraints in three different forms: nonlinear, linear, and conjunctive normal form. Empirical results show that constraints in conjunctive normal form capture the problem most effectively, leading to a method that outperforms the others. Further examination indicates that a substantial proportion of constraints remain inactive during iterative filter reduction. To leverage this observation, we introduce just-in-time generation of such constraints, which yields improvements in efficiency and has the potential to minimize large filters.
Every Action Based Sensor
McFassel, Grace, Shell, Dylan A.
In studying robots and planning problems, a basic question is what is the minimal information a robot must obtain to guarantee task completion. Erdmann's theory of action-based sensors is a classical approach to characterizing fundamental information requirements. That approach uses a plan to derive a type of virtual sensor which prescribes actions that make progress toward a goal. We show that the established theory is incomplete: the previous method for obtaining such sensors, using backchained plans, overlooks some sensors. Furthermore, there are plans, that are guaranteed to achieve goals, where the existing methods are unable to provide any action-based sensor. We identify the underlying feature common to all such plans. Then, we show how to produce action-based sensors even for plans where the existing treatment is inadequate, although for these cases they have no single canonical sensor. Consequently, the approach is generalized to produce sets of sensors. Finally, we show also that this is a complete characterization of action-based sensors for planning problems and discuss how an action-based sensor translates into the traditional conception of a sensor.
Helping Novices Avoid the Hazards of Data: Leveraging Ontologies to Improve Model Generalization Automatically with Online Data Sources
Janpuangtong, Sasin (Texas A&M University) | Shell, Dylan A. (Texas A&M University)
This article describes an end-to-end learning framework that allows a novice to create models from data easily by helping structure the model building process and capturing extended aspects of domain knowledge. By treating the whole modeling process interactively and exploiting high-level knowledge in the form of an ontology, the framework is able to aid the user in a number of ways, including in helping to avoid pitfalls such as data dredging. We describe how the framework automatically exploits structured knowledge in an ontology to identify relevant concepts, and how a data extraction component can make use of online data sources to find measurements of those concepts so that their relevance can be evaluated. Prediction error on unseen examples of these models show that our framework, making use of the ontology, helps to improve model generalization.