Goto

Collaborating Authors

 Shehata, Shady


Palm: A Culturally Inclusive and Linguistically Diverse Dataset for Arabic LLMs

arXiv.org Artificial Intelligence

As large language models (LLMs) become increasingly integrated into daily life, ensuring their cultural sensitivity and inclusivity is paramount. We introduce our dataset, a year-long community-driven project covering all 22 Arab countries. The dataset includes instructions (input, response pairs) in both Modern Standard Arabic (MSA) and dialectal Arabic (DA), spanning 20 diverse topics. Built by a team of 44 researchers across the Arab world, all of whom are authors of this paper, our dataset offers a broad, inclusive perspective. We use our dataset to evaluate the cultural and dialectal capabilities of several frontier LLMs, revealing notable limitations. For instance, while closed-source LLMs generally exhibit strong performance, they are not without flaws, and smaller open-source models face greater challenges. Moreover, certain countries (e.g., Egypt, the UAE) appear better represented than others (e.g., Iraq, Mauritania, Yemen). Our annotation guidelines, code, and data for reproducibility are publicly available.


Jawaher: A Multidialectal Dataset of Arabic Proverbs for LLM Benchmarking

arXiv.org Artificial Intelligence

Recent advancements in instruction fine-tuning, alignment methods such as reinforcement learning from human feedback (RLHF), and optimization techniques like direct preference optimization (DPO) have significantly enhanced the adaptability of large language models (LLMs) to user preferences. However, despite these innovations, many LLMs continue to exhibit biases toward Western, Anglo-centric, or American cultures, with performance on English data consistently surpassing that of other languages. This reveals a persistent cultural gap in LLMs, which complicates their ability to accurately process culturally rich and diverse figurative language such as proverbs. To address this, we introduce Jawaher, a benchmark designed to assess LLMs' capacity to comprehend and interpret Arabic proverbs. Jawaher includes proverbs from various Arabic dialects, along with idiomatic translations and explanations. Through extensive evaluations of both open- and closed-source models, we find that while LLMs can generate idiomatically accurate translations, they struggle with producing culturally nuanced and contextually relevant explanations. These findings highlight the need for ongoing model refinement and dataset expansion to bridge the cultural gap in figurative language processing.


Desert Camels and Oil Sheikhs: Arab-Centric Red Teaming of Frontier LLMs

arXiv.org Artificial Intelligence

Large language models (LLMs) are widely used but raise ethical concerns due to embedded social biases. This study examines LLM biases against Arabs versus Westerners across eight domains, including women's rights, terrorism, and anti-Semitism and assesses model resistance to perpetuating these biases. To this end, we create two datasets: one to evaluate LLM bias toward Arabs versus Westerners and another to test model safety against prompts that exaggerate negative traits ("jailbreaks"). We evaluate six LLMs -- GPT-4, GPT-4o, LlaMA 3.1 (8B & 405B), Mistral 7B, and Claude 3.5 Sonnet. We find 79% of cases displaying negative biases toward Arabs, with LlaMA 3.1-405B being the most biased. Our jailbreak tests reveal GPT-4o as the most vulnerable, despite being an optimized version, followed by LlaMA 3.1-8B and Mistral 7B. All LLMs except Claude exhibit attack success rates above 87% in three categories. We also find Claude 3.5 Sonnet the safest, but it still displays biases in seven of eight categories. Despite being an optimized version of GPT4, We find GPT-4o to be more prone to biases and jailbreaks, suggesting optimization flaws. Our findings underscore the pressing need for more robust bias mitigation strategies and strengthened security measures in LLMs.


Casablanca: Data and Models for Multidialectal Arabic Speech Recognition

arXiv.org Artificial Intelligence

Arabic encompasses a diverse array of for a select few languages. This bias towards linguistic varieties, many of which are nearly mutually resource-rich languages leaves behind the majority unintelligible (Watson, 2007; Abdul-Mageed of the world's languages (Bartelds et al., 2023; et al., 2024). This diversity includes three primary Talafha et al., 2023; Meelen et al., 2024; Tonja categories: Classical Arabic, historically used in et al., 2024). In this work, we report our efforts literature and still employed in religious contexts; to alleviate this challenge for Arabic--a collection Modern Standard Arabic (MSA), used in media, of languages and dialects spoken by more than education, and governmental settings; and numerous 450 million people. We detail a year-long community colloquial dialects, which are the main forms effort to collect and annotate a novel dataset of daily communication across the Arab world and for eight Arabic dialects spanning both Africa and often involve code-switching (Abdul-Mageed et al., Asia. This new dataset, dubbed Casablanca, is rich 2020; Mubarak et al., 2021).


Exploring the Limitations of Detecting Machine-Generated Text

arXiv.org Artificial Intelligence

Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Systems proposed for the task often achieve high performance. However, humans and machines can produce text in different styles and in different domains, and it remains unclear whether machine generated-text detection models favour particular styles or domains. In this paper, we critically examine the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts.


ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic

arXiv.org Artificial Intelligence

The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA), and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%.


Dynamic-SUPERB: Towards A Dynamic, Collaborative, and Comprehensive Instruction-Tuning Benchmark for Speech

arXiv.org Artificial Intelligence

Text language models have shown remarkable zero-shot capability in generalizing to unseen tasks when provided with well-formulated instructions. However, existing studies in speech processing primarily focus on limited or specific tasks. Moreover, the lack of standardized benchmarks hinders a fair comparison across different approaches. Thus, we present Dynamic-SUPERB, a benchmark designed for building universal speech models capable of leveraging instruction tuning to perform multiple tasks in a zero-shot fashion. To achieve comprehensive coverage of diverse speech tasks and harness instruction tuning, we invite the community to collaborate and contribute, facilitating the dynamic growth of the benchmark. To initiate, Dynamic-SUPERB features 55 evaluation instances by combining 33 tasks and 22 datasets. This spans a broad spectrum of dimensions, providing a comprehensive platform for evaluation. Additionally, we propose several approaches to establish benchmark baselines. These include the utilization of speech models, text language models, and the multimodal encoder. Evaluation results indicate that while these baselines perform reasonably on seen tasks, they struggle with unseen ones. We also conducted an ablation study to assess the robustness and seek improvements in the performance. We release all materials to the public and welcome researchers to collaborate on the project, advancing technologies in the field together.


Arabic Dysarthric Speech Recognition Using Adversarial and Signal-Based Augmentation

arXiv.org Artificial Intelligence

Despite major advancements in Automatic Speech Recognition (ASR), the state-of-the-art ASR systems struggle to deal with impaired speech even with high-resource languages. In Arabic, this challenge gets amplified, with added complexities in collecting data from dysarthric speakers. In this paper, we aim to improve the performance of Arabic dysarthric automatic speech recognition through a multi-stage augmentation approach. To this effect, we first propose a signal-based approach to generate dysarthric Arabic speech from healthy Arabic speech by modifying its speed and tempo. We also propose a second stage Parallel Wave Generative (PWG) adversarial model that is trained on an English dysarthric dataset to capture language-independant dysarthric speech patterns and further augment the signal-adjusted speech samples. Furthermore, we propose a fine-tuning and text-correction strategies for Arabic Conformer at different dysarthric speech severity levels. Our fine-tuned Conformer achieved 18% Word Error Rate (WER) and 17.2% Character Error Rate (CER) on synthetically generated dysarthric speech from the Arabic commonvoice speech dataset. This shows significant WER improvement of 81.8% compared to the baseline model trained solely on healthy data. We perform further validation on real English dysarthric speech showing a WER improvement of 124% compared to the baseline trained only on healthy English LJSpeech dataset.


Detecting Propaganda Techniques in Code-Switched Social Media Text

arXiv.org Artificial Intelligence

Propaganda is a form of communication intended to influence the opinions and the mindset of the public to promote a particular agenda. With the rise of social media, propaganda has spread rapidly, leading to the need for automatic propaganda detection systems. Most work on propaganda detection has focused on high-resource languages, such as English, and little effort has been made to detect propaganda for low-resource languages. Yet, it is common to find a mix of multiple languages in social media communication, a phenomenon known as code-switching. Code-switching combines different languages within the same text, which poses a challenge for automatic systems. With this in mind, here we propose the novel task of detecting propaganda techniques in code-switched text. To support this task, we create a corpus of 1,030 texts code-switching between English and Roman Urdu, annotated with 20 propaganda techniques, which we make publicly available. We perform a number of experiments contrasting different experimental setups, and we find that it is important to model the multilinguality directly (rather than using translation) as well as to use the right fine-tuning strategy. The code and the dataset are publicly available at https://github.com/mbzuai-nlp/propaganda-codeswitched-text


Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects

arXiv.org Artificial Intelligence

The significant increase in the number of individuals with chronic ailments (including the elderly and disabled) has dictated an urgent need for an innovative model for healthcare systems. The evolved model will be more personalized and less reliant on traditional brick-and-mortar healthcare institutions such as hospitals, nursing homes, and long-term healthcare centers. The smart healthcare system is a topic of recently growing interest and has become increasingly required due to major developments in modern technologies, especially in artificial intelligence (AI) and machine learning (ML). This paper is aimed to discuss the current state-of-the-art smart healthcare systems highlighting major areas like wearable and smartphone devices for health monitoring, machine learning for disease diagnosis, and the assistive frameworks, including social robots developed for the ambient assisted living environment. Additionally, the paper demonstrates software integration architectures that are very significant to create smart healthcare systems, integrating seamlessly the benefit of data analytics and other tools of AI. The explained developed systems focus on several facets: the contribution of each developed framework, the detailed working procedure, the performance as outcomes, and the comparative merits and limitations. The current research challenges with potential future directions are addressed to highlight the drawbacks of existing systems and the possible methods to introduce novel frameworks, respectively. This review aims at providing comprehensive insights into the recent developments of smart healthcare systems to equip experts to contribute to the field.