Shehab, Mohammad
Age and Power Minimization via Meta-Deep Reinforcement Learning in UAV Networks
Sarathchandra, Sankani, Eldeeb, Eslam, Shehab, Mohammad, Alves, Hirley, Mikhaylov, Konstantin, Alouini, Mohamed-Slim
Age-of-information (AoI) and transmission power are crucial performance metrics in low energy wireless networks, where information freshness is of paramount importance. This study examines a power-limited internet of things (IoT) network supported by a flying unmanned aerial vehicle(UAV) that collects data. Our aim is to optimize the UAV flight trajectory and scheduling policy to minimize a varying AoI and transmission power combination. To tackle this variation, this paper proposes a meta-deep reinforcement learning (RL) approach that integrates deep Q-networks (DQNs) with model-agnostic meta-learning (MAML). DQNs determine optimal UAV decisions, while MAML enables scalability across varying objective functions. Numerical results indicate that the proposed algorithm converges faster and adapts to new objectives more effectively than traditional deep RL methods, achieving minimal AoI and transmission power overall.
MetaGraphLoc: A Graph-based Meta-learning Scheme for Indoor Localization via Sensor Fusion
Etiabi, Yaya, Eldeeb, Eslam, Shehab, Mohammad, Njima, Wafa, Alves, Hirley, Alouini, Mohamed-Slim, Amhoud, El Mehdi
Accurate indoor localization remains challenging due to variations in wireless signal environments and limited data availability. This paper introduces MetaGraphLoc, a novel system leveraging sensor fusion, graph neural networks (GNNs), and meta-learning to overcome these limitations. MetaGraphLoc integrates received signal strength indicator measurements with inertial measurement unit data to enhance localization accuracy. Our proposed GNN architecture, featuring dynamic edge construction (DEC), captures the spatial relationships between access points and underlying data patterns. MetaGraphLoc employs a meta-learning framework to adapt the GNN model to new environments with minimal data collection, significantly reducing calibration efforts. Extensive evaluations demonstrate the effectiveness of MetaGraphLoc. Data fusion reduces localization error by 15.92%, underscoring its importance. The GNN with DEC outperforms traditional deep neural networks by up to 30.89%, considering accuracy. Furthermore, the meta-learning approach enables efficient adaptation to new environments, minimizing data collection requirements. These advancements position MetaGraphLoc as a promising solution for indoor localization, paving the way for improved navigation and location-based services in the ever-evolving Internet of Things networks.
TinyML NLP Approach for Semantic Wireless Sentiment Classification
Radwan, Ahmed Y., Shehab, Mohammad, Alouini, Mohamed-Slim
Natural Language Processing (NLP) operations, such as semantic sentiment analysis and text synthesis, may often impair users' privacy and demand significant on device computational resources. Centralized learning (CL) on the edge offers an alternative energy-efficient approach, yet requires the collection of raw information, which affects the user's privacy. While Federated learning (FL) preserves privacy, it requires high computational energy on board tiny user devices. We introduce split learning (SL) as an energy-efficient alternative, privacy-preserving tiny machine learning (TinyML) scheme and compare it to FL and CL in the presence of Rayleigh fading and additive noise. Our results show that SL reduces processing power and CO2 emissions while maintaining high accuracy, whereas FL offers a balanced compromise between efficiency and privacy. Hence, this study provides insights into deploying energy-efficient, privacy-preserving NLP models on edge devices.
Semantic Meta-Split Learning: A TinyML Scheme for Few-Shot Wireless Image Classification
Eldeeb, Eslam, Shehab, Mohammad, Alves, Hirley, Alouini, Mohamed-Slim
Semantic and goal-oriented (SGO) communication is an emerging technology that only transmits significant information for a given task. Semantic communication encounters many challenges, such as computational complexity at end users, availability of data, and privacy-preserving. This work presents a TinyML-based semantic communication framework for few-shot wireless image classification that integrates split-learning and meta-learning. We exploit split-learning to limit the computations performed by the end-users while ensuring privacy-preserving. In addition, meta-learning overcomes data availability concerns and speeds up training by utilizing similarly trained tasks. The proposed algorithm is tested using a data set of images of hand-written letters. In addition, we present an uncertainty analysis of the predictions using conformal prediction (CP) techniques. Simulation results show that the proposed Semantic-MSL outperforms conventional schemes by achieving 20 % gain on classification accuracy using fewer data points, yet less training energy consumption.
Fed-Sophia: A Communication-Efficient Second-Order Federated Learning Algorithm
Elbakary, Ahmed, Issaid, Chaouki Ben, Shehab, Mohammad, Seddik, Karim, ElBatt, Tamer, Bennis, Mehdi
Federated learning is a machine learning approach where multiple devices collaboratively learn with the help of a parameter server by sharing only their local updates. While gradient-based optimization techniques are widely adopted in this domain, the curvature information that second-order methods exhibit is crucial to guide and speed up the convergence. This paper introduces a scalable second-order method, allowing the adoption of curvature information in federated large models. Our method, coined Fed-Sophia, combines a weighted moving average of the gradient with a clipping operation to find the descent direction. In addition to that, a lightweight estimation of the Hessian's diagonal is used to incorporate the curvature information. Numerical evaluation shows the superiority, robustness, and scalability of the proposed Fed-Sophia scheme compared to first and second-order baselines.
A Multi-Task Oriented Semantic Communication Framework for Autonomous Vehicles
Eldeeb, Eslam, Shehab, Mohammad, Alves, Hirley
Task-oriented semantic communication is an emerging technology that transmits only the relevant semantics of a message instead of the whole message to achieve a specific task. It reduces latency, compresses the data, and is more robust in low SNR scenarios. This work presents a multi-task-oriented semantic communication framework for connected and autonomous vehicles (CAVs). We propose a convolutional autoencoder (CAE) that performs the semantic encoding of the road traffic signs. These encoded images are then transmitted from one CAV to another CAV through satellite in challenging weather conditions where visibility is impaired. In addition, we propose task-oriented semantic decoders for image reconstruction and classification tasks. Simulation results show that the proposed framework outperforms the conventional schemes, such as QAM-16, regarding the reconstructed image's similarity and the classification's accuracy. In addition, it can save up to 89 % of the bandwidth by sending fewer bits.
Conservative and Risk-Aware Offline Multi-Agent Reinforcement Learning for Digital Twins
Eldeeb, Eslam, Sifaou, Houssem, Simeone, Osvaldo, Shehab, Mohammad, Alves, Hirley
Digital twin (DT) platforms are increasingly regarded as a promising technology for controlling, optimizing, and monitoring complex engineering systems such as next-generation wireless networks. An important challenge in adopting DT solutions is their reliance on data collected offline, lacking direct access to the physical environment. This limitation is particularly severe in multi-agent systems, for which conventional multi-agent reinforcement (MARL) requires online interactions with the environment. A direct application of online MARL schemes to an offline setting would generally fail due to the epistemic uncertainty entailed by the limited availability of data. In this work, we propose an offline MARL scheme for DT-based wireless networks that integrates distributional RL and conservative Q-learning to address the environment's inherent aleatoric uncertainty and the epistemic uncertainty arising from limited data. To further exploit the offline data, we adapt the proposed scheme to the centralized training decentralized execution framework, allowing joint training of the agents' policies. The proposed MARL scheme, referred to as multi-agent conservative quantile regression (MA-CQR) addresses general risk-sensitive design criteria and is applied to the trajectory planning problem in drone networks, showcasing its advantages.
Traffic Learning and Proactive UAV Trajectory Planning for Data Uplink in Markovian IoT Models
Eldeeb, Eslam, Shehab, Mohammad, Alves, Hirley
The age of information (AoI) is used to measure the freshness of the data. In IoT networks, the traditional resource management schemes rely on a message exchange between the devices and the base station (BS) before communication which causes high AoI, high energy consumption, and low reliability. Unmanned aerial vehicles (UAVs) as flying BSs have many advantages in minimizing the AoI, energy-saving, and throughput improvement. In this paper, we present a novel learning-based framework that estimates the traffic arrival of IoT devices based on Markovian events. The learning proceeds to optimize the trajectory of multiple UAVs and their scheduling policy. First, the BS predicts the future traffic of the devices. We compare two traffic predictors: the forward algorithm (FA) and the long short-term memory (LSTM). Afterward, we propose a deep reinforcement learning (DRL) approach to optimize the optimal policy of each UAV. Finally, we manipulate the optimum reward function for the proposed DRL approach. Simulation results show that the proposed algorithm outperforms the random-walk (RW) baseline model regarding the AoI, scheduling accuracy, and transmission power.
Age Minimization in Massive IoT via UAV Swarm: A Multi-agent Reinforcement Learning Approach
Eldeeb, Eslam, Shehab, Mohammad, Alves, Hirley
In many massive IoT communication scenarios, the IoT devices require coverage from dynamic units that can move close to the IoT devices and reduce the uplink energy consumption. A robust solution is to deploy a large number of UAVs (UAV swarm) to provide coverage and a better line of sight (LoS) for the IoT network. However, the study of these massive IoT scenarios with a massive number of serving units leads to high dimensional problems with high complexity. In this paper, we apply multi-agent deep reinforcement learning to address the high-dimensional problem that results from deploying a swarm of UAVs to collect fresh information from IoT devices. The target is to minimize the overall age of information in the IoT network. The results reveal that both cooperative and partially cooperative multi-agent deep reinforcement learning approaches are able to outperform the high-complexity centralized deep reinforcement learning approach, which stands helpless in large-scale networks.