Sharma, Mohit
Gemini Robotics: Bringing AI into the Physical World
Gemini Robotics Team, null, Abeyruwan, Saminda, Ainslie, Joshua, Alayrac, Jean-Baptiste, Arenas, Montserrat Gonzalez, Armstrong, Travis, Balakrishna, Ashwin, Baruch, Robert, Bauza, Maria, Blokzijl, Michiel, Bohez, Steven, Bousmalis, Konstantinos, Brohan, Anthony, Buschmann, Thomas, Byravan, Arunkumar, Cabi, Serkan, Caluwaerts, Ken, Casarini, Federico, Chang, Oscar, Chen, Jose Enrique, Chen, Xi, Chiang, Hao-Tien Lewis, Choromanski, Krzysztof, D'Ambrosio, David, Dasari, Sudeep, Davchev, Todor, Devin, Coline, Di Palo, Norman, Ding, Tianli, Dostmohamed, Adil, Driess, Danny, Du, Yilun, Dwibedi, Debidatta, Elabd, Michael, Fantacci, Claudio, Fong, Cody, Frey, Erik, Fu, Chuyuan, Giustina, Marissa, Gopalakrishnan, Keerthana, Graesser, Laura, Hasenclever, Leonard, Heess, Nicolas, Hernaez, Brandon, Herzog, Alexander, Hofer, R. Alex, Humplik, Jan, Iscen, Atil, Jacob, Mithun George, Jain, Deepali, Julian, Ryan, Kalashnikov, Dmitry, Karagozler, M. Emre, Karp, Stefani, Kew, Chase, Kirkland, Jerad, Kirmani, Sean, Kuang, Yuheng, Lampe, Thomas, Laurens, Antoine, Leal, Isabel, Lee, Alex X., Lee, Tsang-Wei Edward, Liang, Jacky, Lin, Yixin, Maddineni, Sharath, Majumdar, Anirudha, Michaely, Assaf Hurwitz, Moreno, Robert, Neunert, Michael, Nori, Francesco, Parada, Carolina, Parisotto, Emilio, Pastor, Peter, Pooley, Acorn, Rao, Kanishka, Reymann, Krista, Sadigh, Dorsa, Saliceti, Stefano, Sanketi, Pannag, Sermanet, Pierre, Shah, Dhruv, Sharma, Mohit, Shea, Kathryn, Shu, Charles, Sindhwani, Vikas, Singh, Sumeet, Soricut, Radu, Springenberg, Jost Tobias, Sterneck, Rachel, Surdulescu, Razvan, Tan, Jie, Tompson, Jonathan, Vanhoucke, Vincent, Varley, Jake, Vesom, Grace, Vezzani, Giulia, Vinyals, Oriol, Wahid, Ayzaan, Welker, Stefan, Wohlhart, Paul, Xia, Fei, Xiao, Ted, Xie, Annie, Xie, Jinyu, Xu, Peng, Xu, Sichun, Xu, Ying, Xu, Zhuo, Yang, Yuxiang, Yao, Rui, Yaroshenko, Sergey, Yu, Wenhao, Yuan, Wentao, Zhang, Jingwei, Zhang, Tingnan, Zhou, Allan, Zhou, Yuxiang
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Predictive Red Teaming: Breaking Policies Without Breaking Robots
Majumdar, Anirudha, Sharma, Mohit, Kalashnikov, Dmitry, Singh, Sumeet, Sermanet, Pierre, Sindhwani, Vikas
Is it possible to expose the vulnerabilities of a given robot policy with respect to changes in environmental factors such as lighting, visual distractors, and object placement without performing hardware evaluations in these scenarios? As we seek to deploy robots in environments with ever-increasing complexity, it becomes imperative to develop scalable methods for predicting how well they will generalize when faced with unseen scenarios. Performing hardware evaluations to discover vulnerabilities -- which can depend in surprising ways on the specifics of policy training and architecture -- is often prohibitively expensive to set up and execute, especially when the goal is to test the limits of safe deployment in a sufficiently diverse set of scenarios. As an example, consider a visuomotor diffusion policy [1] trained to perform pick-and-place tasks via behavior cloning (Figure 1). The policy is trained with a large dataset: over 3K+ demonstrations with varied objects, locations, and visual distractors. Will the policy generalize well to a change in the height of the table by a few centimeters (as one may plausibly predict due to the variations in 2D object locations in the training dataset) compared to when a human is standing closer to the table than seen during training? If so, what is the absolute degradation of the success rate in each case? As it turns out, the above prediction is incorrect: the success rate of the policy degrades from 65% under nominal conditions to 10% by changing the table height, and remains roughly constant with a human close to the table. Predicting the relative and absolute impact of other factors (e.g., lighting, table backgrounds, object distractors; Figure 1) can be even more challenging.
Learning the RoPEs: Better 2D and 3D Position Encodings with STRING
Schenck, Connor, Reid, Isaac, Jacob, Mithun George, Bewley, Alex, Ainslie, Joshua, Rendleman, David, Jain, Deepali, Sharma, Mohit, Dubey, Avinava, Wahid, Ayzaan, Singh, Sumeet, Wagner, Renรฉ, Ding, Tianli, Fu, Chuyuan, Byravan, Arunkumar, Varley, Jake, Gritsenko, Alexey, Minderer, Matthias, Kalashnikov, Dmitry, Tompson, Jonathan, Sindhwani, Vikas, Choromanski, Krzysztof
We introduce STRING: Separable Translationally Invariant Position Encodings. STRING extends Rotary Position Encodings, a recently proposed and widely used algorithm in large language models, via a unifying theoretical framework. Importantly, STRING still provides exact translation invariance, including token coordinates of arbitrary dimensionality, whilst maintaining a low computational footprint. These properties are especially important in robotics, where efficient 3D token representation is key. We integrate STRING into Vision Transformers with RGB(-D) inputs (color plus optional depth), showing substantial gains, e.g. in open-vocabulary object detection and for robotics controllers. We complement our experiments with a rigorous mathematical analysis, proving the universality of our methods.
Gen-AI for User Safety: A Survey
Desai, Akshar Prabhu, Ravi, Tejasvi, Luqman, Mohammad, Sharma, Mohit, Kota, Nithya, Yadav, Pranjul
Machine Learning and data mining techniques (i.e. supervised and unsupervised techniques) are used across domains to detect user safety violations. Examples include classifiers used to detect whether an email is spam or a web-page is requesting bank login information. However, existing ML/DM classifiers are limited in their ability to understand natural languages w.r.t the context and nuances. The aforementioned challenges are overcome with the arrival of Gen-AI techniques, along with their inherent ability w.r.t translation between languages, fine-tuning between various tasks and domains. In this manuscript, we provide a comprehensive overview of the various work done while using Gen-AI techniques w.r.t user safety. In particular, we first provide the various domains (e.g. phishing, malware, content moderation, counterfeit, physical safety) across which Gen-AI techniques have been applied. Next, we provide how Gen-AI techniques can be used in conjunction with various data modalities i.e. text, images, videos, audio, executable binaries to detect violations of user-safety. Further, also provide an overview of how Gen-AI techniques can be used in an adversarial setting. We believe that this work represents the first summarization of Gen-AI techniques for user-safety.
How Far Can Fairness Constraints Help Recover From Biased Data?
Sharma, Mohit, Deshpande, Amit
A general belief in fair classification is that fairness constraints incur a trade-off with accuracy, which biased data may worsen. Contrary to this belief, Blum & Stangl (2019) show that fair classification with equal opportunity constraints even on extremely biased data can recover optimally accurate and fair classifiers on the original data distribution. Their result is interesting because it demonstrates that fairness constraints can implicitly rectify data bias and simultaneously overcome a perceived fairness-accuracy trade-off. Their data bias model simulates under-representation and label bias in underprivileged population, and they show the above result on a stylized data distribution with i.i.d. label noise, under simple conditions on the data distribution and bias parameters. We propose a general approach to extend the result of Blum & Stangl (2019) to different fairness constraints, data bias models, data distributions, and hypothesis classes. We strengthen their result, and extend it to the case when their stylized distribution has labels with Massart noise instead of i.i.d. noise. We prove a similar recovery result for arbitrary data distributions using fair reject option classifiers. We further generalize it to arbitrary data distributions and arbitrary hypothesis classes, i.e., we prove that for any data distribution, if the optimally accurate classifier in a given hypothesis class is fair and robust, then it can be recovered through fair classification with equal opportunity constraints on the biased distribution whenever the bias parameters satisfy certain simple conditions. Finally, we show applications of our technique to time-varying data bias in classification and fair machine learning pipelines.
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models
Saxena, Saumya, Sharma, Mohit, Kroemer, Oliver
Leveraging sensing modalities across diverse spatial and temporal resolutions can improve performance of robotic manipulation tasks. Multi-spatial resolution sensing provides hierarchical information captured at different spatial scales and enables both coarse and precise motions. Simultaneously multi-temporal resolution sensing enables the agent to exhibit high reactivity and real-time control. In this work, we propose a framework, MResT (Multi-Resolution Transformer), for learning generalizable language-conditioned multi-task policies that utilize sensing at different spatial and temporal resolutions using networks of varying capacities to effectively perform real time control of precise and reactive tasks. We leverage off-the-shelf pretrained vision-language models to operate on low-frequency global features along with small non-pretrained models to adapt to high frequency local feedback. Through extensive experiments in 3 domains (coarse, precise and dynamic manipulation tasks), we show that our approach significantly improves (2X on average) over recent multi-task baselines. Further, our approach generalizes well to visual and geometric variations in target objects and to varying interaction forces.
Open X-Embodiment: Robotic Learning Datasets and RT-X Models
Collaboration, Open X-Embodiment, Padalkar, Abhishek, Pooley, Acorn, Mandlekar, Ajay, Jain, Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky, Alexander, Rai, Anant, Singh, Anikait, Garg, Animesh, Brohan, Anthony, Raffin, Antonin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon, Schรถlkopf, Bernhard, Ichter, Brian, Lu, Cewu, Xu, Charles, Finn, Chelsea, Xu, Chenfeng, Chi, Cheng, Huang, Chenguang, Chan, Christine, Pan, Chuer, Fu, Chuyuan, Devin, Coline, Driess, Danny, Pathak, Deepak, Shah, Dhruv, Bรผchler, Dieter, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Ceola, Federico, Xia, Fei, Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan, Ge, Schiavi, Giulio, Kahn, Gregory, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Walke, Homer, Fang, Hongjie, Mordatch, Igor, Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jaehyung, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jiajun, Wu, Jialin, Luo, Jianlan, Gu, Jiayuan, Tan, Jie, Oh, Jihoon, Malik, Jitendra, Booher, Jonathan, Tompson, Jonathan, Yang, Jonathan, Lim, Joseph J., Silvรฉrio, Joรฃo, Han, Junhyek, Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrishnan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawaharazuka, Kento, Zhang, Kevin, Rana, Krishan, Srinivasan, Krishnan, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam, Ott, Lionel, Lee, Lisa, Tomizuka, Masayoshi, Spero, Max, Du, Maximilian, Ahn, Michael, Zhang, Mingtong, Ding, Mingyu, Srirama, Mohan Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen, Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Di Palo, Norman, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroemer, Oliver, Sanketi, Pannag R, Wohlhart, Paul, Xu, Peng, Sermanet, Pierre, Sundaresan, Priya, Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Martรญn-Martรญn, Roberto, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Julian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Stefan, Welker, Stefan, Tian, Stephen, Dasari, Sudeep, Belkhale, Suneel, Osa, Takayuki, Harada, Tatsuya, Matsushima, Tatsuya, Xiao, Ted, Yu, Tianhe, Ding, Tianli, Davchev, Todor, Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Jain, Vidhi, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan, Burgard, Wolfram, Chen, Xi, Wang, Xiaolong, Zhu, Xinghao, Li, Xuanlin, Lu, Yao, Chebotar, Yevgen, Zhou, Yifan, Zhu, Yifeng, Xu, Ying, Wang, Yixuan, Bisk, Yonatan, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Xu, Zhuo, Cui, Zichen Jeff
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website $\href{https://robotics-transformer-x.github.io}{\text{robotics-transformer-x.github.io}}$.
On Comparing Fair Classifiers under Data Bias
Sharma, Mohit, Deshpande, Amit, Shah, Rajiv Ratn
In this paper, we consider a theoretical model for injecting data bias, namely, under-representation and label bias (Blum & Stangl, 2019). We empirically study the effect of varying data biases on the accuracy and fairness of fair classifiers. Through extensive experiments on both synthetic and real-world datasets (e.g., Adult, German Credit, Bank Marketing, COMPAS), we empirically audit pre-, in-, and post-processing fair classifiers from standard fairness toolkits for their fairness and accuracy by injecting varying amounts of under-representation and label bias in their training data (but not the test data). Our main observations are: 1. The fairness and accuracy of many standard fair classifiers degrade severely as the bias injected in their training data increases, 2. A simple logistic regression model trained on the right data can often outperform, in both accuracy and fairness, most fair classifiers trained on biased training data, and 3. A few, simple fairness techniques (e.g., reweighing, exponentiated gradients) seem to offer stable accuracy and fairness guarantees even when their training data is injected with under-representation and label bias. Our experiments also show how to integrate a measure of data bias risk in the existing fairness dashboards for real-world deployments.
RoboAgent: Generalization and Efficiency in Robot Manipulation via Semantic Augmentations and Action Chunking
Bharadhwaj, Homanga, Vakil, Jay, Sharma, Mohit, Gupta, Abhinav, Tulsiani, Shubham, Kumar, Vikash
The grand aim of having a single robot that can manipulate arbitrary objects in diverse settings is at odds with the paucity of robotics datasets. Acquiring and growing such datasets is strenuous due to manual efforts, operational costs, and safety challenges. A path toward such an universal agent would require a structured framework capable of wide generalization but trained within a reasonable data budget. In this paper, we develop an efficient system (RoboAgent) for training universal agents capable of multi-task manipulation skills using (a) semantic augmentations that can rapidly multiply existing datasets and (b) action representations that can extract performant policies with small yet diverse multi-modal datasets without overfitting. In addition, reliable task conditioning and an expressive policy architecture enable our agent to exhibit a diverse repertoire of skills in novel situations specified using language commands. Using merely 7500 demonstrations, we are able to train a single agent capable of 12 unique skills, and demonstrate its generalization over 38 tasks spread across common daily activities in diverse kitchen scenes. On average, RoboAgent outperforms prior methods by over 40% in unseen situations while being more sample efficient and being amenable to capability improvements and extensions through fine-tuning. Videos at https://robopen.github.io/
Lossless Adaptation of Pretrained Vision Models For Robotic Manipulation
Sharma, Mohit, Fantacci, Claudio, Zhou, Yuxiang, Koppula, Skanda, Heess, Nicolas, Scholz, Jon, Aytar, Yusuf
Recent works have shown that large models pretrained on common visual learning tasks can provide useful representations for a wide range of specialized perception problems, as well as a variety of robotic manipulation tasks. While prior work on robotic manipulation has predominantly used frozen pretrained features, we demonstrate that in robotics this approach can fail to reach optimal performance, and that fine-tuning of the full model can lead to significantly better results. We introduce lossless adaptation to address this shortcoming of classical fine-tuning. We demonstrate that appropriate placement of our parameter efficient adapters can significantly reduce the performance gap between frozen pretrained representations and full end-to-end finetuning without changes to the original representation and thus preserving original capabilities of the pretrained model. We perform a comprehensive investigation across three major model architectures (ViTs, NFNets, and ResNets), supervised (ImageNet-1K classification) and self-supervised pretrained weights (CLIP, BYOL, Visual MAE) in 3 task domains and 35 individual tasks, and demonstrate that our claims are strongly validated in various settings. Please see real world videos at https://sites.google.com/view/robo-adapters. Pretrained general-purpose vision models, often also referred to as vision foundation models (Yuan et al., 2021), have developed a growing set of perceptual capabilities in recent years. Large-scale vision-language models such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021)) are examples of these highly capable general-purpose vision models which have enabled many applications for image generation/editing (Ramesh et al., 2022; Saharia et al.) and image-based dialog (Alayrac et al., 2022). Existing self-supervised pretrained visual models, such as SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020) or Visual MAE (He et al., 2022), have also been shown to provide strong initializations for a wide range of visual downstream tasks. How can we unlock the power of these models for increasingly novel and challenging control applications? One solution is to add an output head for each control task and fine-tune the entire architecture. However, fine-tuning degrades performance on the original task(s) the model was trained for, and therefore requires maintaining copies of the model for all tasks we wish to concurrently support. This strategy quickly becomes infeasible as we move towards more general and multi-task agents. For instance, embodied agents acting in the real world will end up solving thousands of downstream manipulation tasks. Given limited hardware capabilities of robots keeping separate copies of increasingly large models (e.g. This is further exacerbated for robot manipulation wherein hardware and tool differences can result in different task configurations which may require different representations.