Plotting

 Shah, Neel


Measuring directional bias amplification in image captions using predictability

arXiv.org Artificial Intelligence

When we train models on biased ML datasets, they not only learn these biases but can inflate them at test time - a phenomenon called bias amplification. To measure bias amplification in ML datasets, many co-occurrence-based metrics have been proposed. Co-occurrence-based metrics are effective in measuring bias amplification in simple problems like image classification. However, these metrics are ineffective for complex problems like image captioning as they cannot capture the semantics of a caption. To measure bias amplification in captions, prior work introduced a predictability-based metric called Leakage in Captioning (LIC). While LIC captures the semantics and context of captions, it has limitations. LIC cannot identify the direction in which bias is amplified, poorly estimates dataset bias due to a weak vocabulary substitution strategy, and is highly sensitive to attacker models (a hyperparameter in predictability-based metrics). To overcome these issues, we propose Directional Predictability Amplification in Captioning (DPAC). DPAC measures directional bias amplification in captions, provides a better estimate of dataset bias using an improved substitution strategy, and is less sensitive to attacker models. Our experiments on the COCO captioning dataset show how DPAC is the most reliable metric to measure bias amplification in captions.


Finding Paths for Explainable MOOC Recommendation: A Learner Perspective

arXiv.org Artificial Intelligence

The increasing availability of Massive Open Online Courses (MOOCs) has created a necessity for personalized course recommendation systems. These systems often combine neural networks with Knowledge Graphs (KGs) to achieve richer representations of learners and courses. While these enriched representations allow more accurate and personalized recommendations, explainability remains a significant challenge which is especially problematic for certain domains with significant impact such as education and online learning. Recently, a novel class of recommender systems that uses reinforcement learning and graph reasoning over KGs has been proposed to generate explainable recommendations in the form of paths over a KG. Despite their accuracy and interpretability on e-commerce datasets, these approaches have scarcely been applied to the educational domain and their use in practice has not been studied. In this work, we propose an explainable recommendation system for MOOCs that uses graph reasoning. To validate the practical implications of our approach, we conducted a user study examining user perceptions of our new explainable recommendations. We demonstrate the generalizability of our approach by conducting experiments on two educational datasets: COCO and Xuetang.


Assisting Clinical Decisions for Scarcely Available Treatment via Disentangled Latent Representation

arXiv.org Artificial Intelligence

Extracorporeal membrane oxygenation (ECMO) is an essential life-supporting modality for COVID-19 patients who are refractory to conventional therapies. However, the proper treatment decision has been the subject of significant debate and it remains controversial about who benefits from this scarcely available and technically complex treatment option. To support clinical decisions, it is a critical need to predict the treatment need and the potential treatment and no-treatment responses. Targeting this clinical challenge, we propose Treatment Variational AutoEncoder (TVAE), a novel approach for individualized treatment analysis. TVAE is specifically designed to address the modeling challenges like ECMO with strong treatment selection bias and scarce treatment cases. TVAE conceptualizes the treatment decision as a multi-scale problem. We model a patient's potential treatment assignment and the factual and counterfactual outcomes as part of their intrinsic characteristics that can be represented by a deep latent variable model. The factual and counterfactual prediction errors are alleviated via a reconstruction regularization scheme together with semi-supervision, and the selection bias and the scarcity of treatment cases are mitigated by the disentangled and distribution-matched latent space and the label-balancing generative strategy. We evaluate TVAE on two real-world COVID-19 datasets: an international dataset collected from 1651 hospitals across 63 countries, and a institutional dataset collected from 15 hospitals. The results show that TVAE outperforms state-of-the-art treatment effect models in predicting both the propensity scores and factual outcomes on heterogeneous COVID-19 datasets. Additional experiments also show TVAE outperforms the best existing models in individual treatment effect estimation on the synthesized IHDP benchmark dataset.


Human-Machine Collaborative Optimization via Apprenticeship Scheduling

Journal of Artificial Intelligence Research

Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the "single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes. We propose a new approach for capturing this decision-making process through counterfactual reasoning in pairwise comparisons. Our approach is model-free and does not require iterating through the state space. We demonstrate that this approach accurately learns multifaceted heuristics on a synthetic and real world data sets. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of schedule optimization. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates optimal solutions up to 9.5 times faster than a state-of-the-art optimization algorithm.


Human-Machine Collaborative Optimization via Apprenticeship Scheduling

arXiv.org Artificial Intelligence

Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.