Shafieezadeh-Abadeh, Soroosh
New Perspectives on Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
Shafieezadeh-Abadeh, Soroosh, Aolaritei, Liviu, Dörfler, Florian, Kuhn, Daniel
We study optimal transport-based distributionally robust optimization problems where a fictitious adversary, often envisioned as nature, can choose the distribution of the uncertain problem parameters by reshaping a prescribed reference distribution at a finite transportation cost. In this framework, we show that robustification is intimately related to various forms of variation and Lipschitz regularization even if the transportation cost function fails to be (some power of) a metric. We also derive conditions for the existence and the computability of a Nash equilibrium between the decision-maker and nature, and we demonstrate numerically that nature's Nash strategy can be viewed as a distribution that is supported on remarkably deceptive adversarial samples. Finally, we identify practically relevant classes of optimal transport-based distributionally robust optimization problems that can be addressed with efficient gradient descent algorithms even if the loss function or the transportation cost function are nonconvex (but not both at the same time).
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical Solution
Taskesen, Bahar, Shafieezadeh-Abadeh, Soroosh, Kuhn, Daniel
Semi-discrete optimal transport problems, which evaluate the Wasserstein distance between a discrete and a generic (possibly non-discrete) probability measure, are believed to be computationally hard. Even though such problems are ubiquitous in statistics, machine learning and computer vision, however, this perception has not yet received a theoretical justification. To fill this gap, we prove that computing the Wasserstein distance between a discrete probability measure supported on two points and the Lebesgue measure on the standard hypercube is already #P-hard. This insight prompts us to seek approximate solutions for semi-discrete optimal transport problems. We thus perturb the underlying transportation cost with an additive disturbance governed by an ambiguous probability distribution, and we introduce a distributionally robust dual optimal transport problem whose objective function is smoothed with the most adverse disturbance distributions from within a given ambiguity set. We further show that smoothing the dual objective function is equivalent to regularizing the primal objective function, and we identify several ambiguity sets that give rise to several known and new regularization schemes. As a byproduct, we discover an intimate relation between semi-discrete optimal transport problems and discrete choice models traditionally studied in psychology and economics. To solve the regularized optimal transport problems efficiently, we use a stochastic gradient descent algorithm with imprecise stochastic gradient oracles. A new convergence analysis reveals that this algorithm improves the best known convergence guarantee for semi-discrete optimal transport problems with entropic regularizers.
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation
Nguyen, Viet Anh, Shafieezadeh-Abadeh, Soroosh, Yue, Man-Chung, Kuhn, Daniel, Wiesemann, Wolfram
The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood that identifies a probability measure which lies in the neighborhood of the nominal measure and that maximizes the probability of observing the given sample point. We show that when the neighborhood is constructed by the Kullback-Leibler divergence, by moment conditions or by the Wasserstein distance, then our \textit{optimistic likelihood} can be determined through the solution of a convex optimization problem, and it admits an analytical expression in particular cases. We also show that the posterior inference problem with our optimistic likelihood approximation enjoys strong theoretical performance guarantees, and it performs competitively in a probabilistic classification task.
Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization
Nguyen, Viet Anh, Shafieezadeh-Abadeh, Soroosh, Yue, Man-Chung, Kuhn, Daniel, Wiesemann, Wolfram
A fundamental problem arising in many areas of machine learning is the evaluation of the likelihood of a given observation under different nominal distributions. Frequently, these nominal distributions are themselves estimated from data, which makes them susceptible to estimation errors. We thus propose to replace each nominal distribution with an ambiguity set containing all distributions in its vicinity and to evaluate an \emph{optimistic likelihood}, that is, the maximum of the likelihood over all distributions in the ambiguity set. When the proximity of distributions is quantified by the Fisher-Rao distance or the Kullback-Leibler divergence, the emerging optimistic likelihoods can be computed efficiently using either geodesic or standard convex optimization techniques. We showcase the advantages of working with optimistic likelihoods on a classification problem using synthetic as well as empirical data.
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Kuhn, Daniel, Esfahani, Peyman Mohajerin, Nguyen, Viet Anh, Shafieezadeh-Abadeh, Soroosh
Many decision problems in science, engineering and economics are affected by uncertain parameters whose distribution is only indirectly observable through samples. The goal of data-driven decision-making is to learn a decision from finitely many training samples that will perform well on unseen test samples. This learning task is difficult even if all training and test samples are drawn from the same distribution---especially if the dimension of the uncertainty is large relative to the training sample size. Wasserstein distributionally robust optimization seeks data-driven decisions that perform well under the most adverse distribution within a certain Wasserstein distance from a nominal distribution constructed from the training samples. In this tutorial we will argue that this approach has many conceptual and computational benefits. Most prominently, the optimal decisions can often be computed by solving tractable convex optimization problems, and they enjoy rigorous out-of-sample and asymptotic consistency guarantees. We will also show that Wasserstein distributionally robust optimization has interesting ramifications for statistical learning and motivates new approaches for fundamental learning tasks such as classification, regression, maximum likelihood estimation or minimum mean square error estimation, among others.
Wasserstein Distributionally Robust Kalman Filtering
Shafieezadeh-Abadeh, Soroosh, Nguyen, Viet Anh, Kuhn, Daniel, Esfahani, Peyman Mohajerin
We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex program. We further devise a Frank-Wolfe algorithm for this convex program whose direction-searching subproblem can be solved in a quasi-closed form. Using these ingredients, we introduce a distributionally robust Kalman filter that hedges against model risk.
Regularization via Mass Transportation
Shafieezadeh-Abadeh, Soroosh, Kuhn, Daniel, Esfahani, Peyman Mohajerin
The goal of regression and classification methods in supervised learning is to minimize the empirical risk, that is, the expectation of some loss function quantifying the prediction error under the empirical distribution. When facing scarce training data, overfitting is typically mitigated by adding regularization terms to the objective that penalize hypothesis complexity. In this paper we introduce new regularization techniques using ideas from distributionally robust optimization, and we give new probabilistic interpretations to existing techniques. Specifically, we propose to minimize the worst-case expected loss, where the worst case is taken over the ball of all (continuous or discrete) distributions that have a bounded transportation distance from the (discrete) empirical distribution. By choosing the radius of this ball judiciously, we can guarantee that the worst-case expected loss provides an upper confidence bound on the loss on test data, thus offering new generalization bounds. We prove that the resulting regularized learning problems are tractable and can be tractably kernelized for many popular loss functions. We validate our theoretical out-of-sample guarantees through simulated and empirical experiments.
Distributionally Robust Logistic Regression
Shafieezadeh-Abadeh, Soroosh, Esfahani, Peyman Mohajerin, Kuhn, Daniel
This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this ball is chosen judiciously, we can guarantee that it contains the unknown data-generating distribution with high confidence. We then formulate a distributionally robust logistic regression model that minimizes a worst-case expected logloss function, where the worst case is taken over all distributions in the Wasserstein ball. We prove that this optimization problem admits a tractable reformulation and encapsulates the classical as well as the popular regularized logistic regression problems as special cases. We further propose a distributionally robust approach based on Wasserstein balls to compute upper and lower confidence bounds on the misclassification probability of the resulting classifier. These bounds are given by the optimal values of two highly tractable linear programs. We validate our theoretical out-of-sample guarantees through simulated and empirical experiments.