Sethi, Tavpritesh
Characterizing the Emotion Carriers of COVID-19 Misinformation and Their Impact on Vaccination Outcomes in India and the United States
Pal, Ridam, S, Sanjana, Mahto, Deepak, Agrawal, Kriti, Mengi, Gopal, Nagpal, Sargun, Devadiga, Akshaya, Sethi, Tavpritesh
The COVID-19 Infodemic had an unprecedented impact on health behaviors and outcomes at a global scale. While many studies have focused on a qualitative and quantitative understanding of misinformation, including sentiment analysis, there is a gap in understanding the emotion-carriers of misinformation and their differences across geographies. In this study, we characterized emotion carriers and their impact on vaccination rates in India and the United States. A manually labelled dataset was created from 2.3 million tweets and collated with three publicly available datasets (CoAID, AntiVax, CMU) to train deep learning models for misinformation classification. Misinformation labelled tweets were further analyzed for behavioral aspects by leveraging Plutchik Transformers to determine the emotion for each tweet. Time series analysis was conducted to study the impact of misinformation on spatial and temporal characteristics. Further, categorical classification was performed using transformer models to assign categories for the misinformation tweets. Word2Vec+BiLSTM was the best model for misinformation classification, with an F1-score of 0.92. The US had the highest proportion of misinformation tweets (58.02%), followed by the UK (10.38%) and India (7.33%). Disgust, anticipation, and anger were associated with an increased prevalence of misinformation tweets. Disgust was the predominant emotion associated with misinformation tweets in the US, while anticipation was the predominant emotion in India. For India, the misinformation rate exhibited a lead relationship with vaccination, while in the US it lagged behind vaccination. Our study deciphered that emotions acted as differential carriers of misinformation across geography and time. These carriers can be monitored to develop strategic interventions for countering misinformation, leading to improved public health.
A Cross-lingual Natural Language Processing Framework for Infodemic Management
Pal, Ridam, Pandey, Rohan, Gautam, Vaibhav, Bhagat, Kanav, Sethi, Tavpritesh
The COVID-19 pandemic has put immense pressure on health systems which are further strained due to the misinformation surrounding it. Under such a situation, providing the right information at the right time is crucial. There is a growing demand for the management of information spread using Artificial Intelligence. Hence, we have exploited the potential of Natural Language Processing for identifying relevant information that needs to be disseminated amongst the masses. In this work, we present a novel Cross-lingual Natural Language Processing framework to provide relevant information by matching daily news with trusted guidelines from the World Health Organization. The proposed pipeline deploys various techniques of NLP such as summarizers, word embeddings, and similarity metrics to provide users with news articles along with a corresponding healthcare guideline. A total of 36 models were evaluated and a combination of LexRank based summarizer on Word2Vec embedding with Word Mover distance metric outperformed all other models. This novel open-source approach can be used as a template for proactive dissemination of relevant healthcare information in the midst of misinformation spread associated with epidemics.
VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution using Reinforcement Learning
Awasthi, Raghav, Guliani, Keerat Kaur, Bhatt, Arshita, Gill, Mehrab Singh, Nagori, Aditya, Kumaraguru, Ponnurangam, Sethi, Tavpritesh
A COVID-19 vaccine is our best bet for mitigating the ongoing onslaught of the pandemic. However, vaccine is also expected to be a limited resource. An optimal allocation strategy, especially in countries with access inequities and a temporal separation of hot-spots might be an effective way of halting the disease spread. We approach this problem by proposing a novel pipeline VacSIM that dovetails Actor-Critic using Kronecker-Factored Trust Region (ACKTR) model into a Contextual Bandits approach for optimizing the distribution of COVID-19 vaccine. Whereas the ACKTR model suggests better actions and rewards, Contextual Bandits allow online modifications that may need to be implemented on a day-to-day basis in the real world scenario. We evaluate this framework against a naive allocation approach of distributing vaccine proportional to the incidence of COVID-19 cases in five different States across India and demonstrate up to 100,000 additional lives potentially saved and a five-fold increase in the efficacy of limiting the spread over a period of 30 days through the VacSIM approach. We also propose novel evaluation strategies including a standard compartmental model based projections and a causality preserving evaluation of our model. Finally, we contribute a new Open-AI environment meant for the vaccine distribution scenario, and open-source VacSIM for wide testing and applications across the globe.
Learning to Address Health Inequality in the United States with a Bayesian Decision Network
Sethi, Tavpritesh, Mittal, Anant, Maheshwari, Shubham, Chugh, Samarth
Life-expectancy is a complex outcome driven by genetic, socio-demographic, environmental and geographic factors. Increasing socio-economic and health disparities in the United States are propagating the longevity-gap, making it a cause for concern. Earlier studies have probed individual factors but an integrated picture to reveal quantifiable actions has been missing. Amidst growing concerns about the further widening of healthcare inequality and differential access created by Artificial Intelligence, it is imperative to explore it's potential for illuminating biases and enabling transparent policy decisions. In this work, we reveal actionable interventions for decreasing the longevity-gap in the United States by analyzing a County-level data resource with healthcare, socio-economic, behavioral, education and demographic features. We learn an ensemble-averaged structure, draw inferences using the joint probability distribution and extend it to a Bayesian Decision Network for identifying policy actions. We draw quantitative estimates for the positive roles of diversity, preventive-care quality and stable-families within the unified framework of our decision network. Finally, we make this analysis and dashboard available as an interactive web-application for enabling users and policy-makers to validate our insights on bridging the longevity-gap and explore the ones beyond reported in this work.