Not enough data to create a plot.
Try a different view from the menu above.
Seo, Wonduk
SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Seo, Wonduk, Lee, Juhyeon, Bu, Yi
Large Language Models (LLMs) have revolutionized automated data analytics and machine learning by enabling dynamic reasoning and adaptability. While recent approaches have advanced multi-stage pipelines through multi-agent systems, they typically rely on rigid, single-path workflows that limit the exploration and integration of diverse strategies, often resulting in suboptimal predictions. To address these challenges, we propose SPIO (Sequential Plan Integration and Optimization), a novel framework that leverages LLM-driven decision-making to orchestrate multi-agent planning across four key modules: data preprocessing, feature engineering, modeling, and hyperparameter tuning. In each module, dedicated planning agents independently generate candidate strategies that cascade into subsequent stages, fostering comprehensive exploration. A plan optimization agent refines these strategies by suggesting several optimized plans. We further introduce two variants: SPIO-S, which selects a single best solution path as determined by the LLM, and SPIO-E, which selects the top k candidate plans and ensembles them to maximize predictive performance. Extensive experiments on Kaggle and OpenML datasets demonstrate that SPIO significantly outperforms state-of-the-art methods, providing a robust and scalable solution for automated data science task.
QA-Expand: Multi-Question Answer Generation for Enhanced Query Expansion in Information Retrieval
Seo, Wonduk, Lee, Seunghyun
Query expansion is widely used in Information Retrieval (IR) to improve search outcomes by enriching queries with additional contextual information. Although recent Large Language Model (LLM) based methods generate pseudo-relevant content and expanded terms via multiple prompts, they often yield repetitive, narrow expansions that lack the diverse context needed to retrieve all relevant information. In this paper, we introduce QA-Expand, a novel and effective framework for query expansion. It first generates multiple relevant questions from the initial query and subsequently produces corresponding pseudo-answers as surrogate documents. A feedback model further rewrites and filters these answers to ensure only the most informative augmentations are incorporated. Extensive experiments on benchmarks such as BEIR and TREC demonstrate that QA-Expand enhances retrieval performance by up to 13% over state-of-the-art methods, offering a robust solution for modern retrieval challenges.
VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
Seo, Wonduk, Lee, Seungyong, Kang, Daye, Yuan, Zonghao, Lee, Seunghyun
Unprecedented breakthroughs in Large Language Models (LLMs) has amplified its penetration into application of automated visualization code generation. Few-shot prompting and query expansion techniques have notably enhanced data visualization performance, however, still fail to overcome ambiguity and complexity of natural language queries - imposing an inherent burden for manual human intervention. To mitigate such limitations, we propose a holistic framework VisPath : A Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation, which systematically enhances code quality through structured reasoning and refinement. VisPath is a multi-stage framework, specially designed to handle underspecified queries. To generate a robust final visualization code, it first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting, each representing a distinct reasoning path. Refined queries are used to produce candidate visualization scripts, consequently executed to generate multiple images. Comprehensively assessing correctness and quality of outputs, VisPath generates feedback for each image, which are then fed to aggregation module to generate optimal result. Extensive experiments on benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath significantly outperforms state-of-the-art (SOTA) methods, increased up to average 17%, offering a more reliable solution for AI-driven visualization code generation.
Pesti-Gen: Unleashing a Generative Molecule Approach for Toxicity Aware Pesticide Design
Kim, Taehan, Seo, Wonduk
Global climate change has reduced crop resilience and pesticide efficacy, making reliance on synthetic pesticides inevitable, even though their widespread use poses significant health and environmental risks. While these pesticides remain a key tool in pest management, previous machine-learning applications in pesticide and agriculture have focused on classification or regression, leaving the fundamental challenge of generating new molecular structures or designing novel candidates unaddressed. In this paper, we propose Pesti-Gen, a novel generative model based on variational auto-encoders, designed to create pesticide candidates with optimized properties for the first time. Specifically, Pesti-Gen leverages a two-stage learning process: an initial pre-training phase that captures a generalized chemical structure representation, followed by a fine-tuning stage that incorporates toxicity-specific information. The model simultaneously optimizes over multiple toxicity metrics, such as (1) livestock toxicity and (2) aqua toxicity to generate environmentally friendly pesticide candidates. Notably, Pesti-Gen achieves approximately 68\% structural validity in generating new molecular structures, demonstrating the model's effectiveness in producing optimized and feasible pesticide candidates, thereby providing a new way for safer and more sustainable pest management solutions.
ValuesRAG: Enhancing Cultural Alignment Through Retrieval-Augmented Contextual Learning
Seo, Wonduk, Yuan, Zonghao, Bu, Yi
Cultural values alignment in Large Language Models (LLMs) is a critical challenge due to their tendency to embed Western-centric biases from training data, leading to misrepresentations and fairness issues in cross-cultural contexts. Recent approaches, such as role-assignment and few-shot learning, often struggle with reliable cultural alignment as they heavily rely on pre-trained knowledge, lack scalability, and fail to capture nuanced cultural values effectively. To address these issues, we propose ValuesRAG, a novel and effective framework that applies Retrieval-Augmented Generation (RAG) with in-context learning to integrate cultural and demographic knowledge dynamically during text generation. Leveraging the World Values Survey (WVS) dataset, ValuesRAG first generates summaries of values for each individual. Subsequently, we curated several representative regional datasets to serve as test datasets and retrieve relevant summaries of values based on demographic features, followed by a reranking step to select the top-k relevant summaries. ValuesRAG consistently outperforms baseline methods, both in the main experiment and in the ablation study where only the values summary was provided, highlighting ValuesRAG's potential to foster culturally aligned AI systems and enhance the inclusivity of AI-driven applications.