Goto

Collaborating Authors

 Sengupta, Shubho


Mutation-Guided LLM-based Test Generation at Meta

arXiv.org Artificial Intelligence

This paper describes Meta's ACH system for mutation-guided LLM-based test generation. ACH generates relatively few mutants (aka simulated faults), compared to traditional mutation testing. Instead, it focuses on generating currently undetected faults that are specific to an issue of concern. From these currently uncaught faults, ACH generates tests that can catch them, thereby `killing' the mutants and consequently hardening the platform against regressions. We use privacy concerns to illustrate our approach, but ACH can harden code against {\em any} type of regression. In total, ACH was applied to 10,795 Android Kotlin classes in 7 software platforms deployed by Meta, from which it generated 9,095 mutants and 571 privacy-hardening test cases. ACH also deploys an LLM-based equivalent mutant detection agent that achieves a precision of 0.79 and a recall of 0.47 (rising to 0.95 and 0.96 with simple pre-processing). ACH was used by Messenger and WhatsApp test-a-thons where engineers accepted 73% of its tests, judging 36% to privacy relevant. We conclude that ACH hardens code against specific concerns and that, even when its tests do not directly tackle the specific concern, engineers find them useful for their other benefits.


Revisiting Reliability in Large-Scale Machine Learning Research Clusters

arXiv.org Artificial Intelligence

Reliability is a fundamental challenge in operating large-scale machine learning (ML) infrastructures, particularly as the scale of ML models and training clusters continues to grow. Despite decades of research on infrastructure failures, the impact of job failures across different scales remains unclear. This paper presents a view of managing two large, multi-tenant ML clusters, providing quantitative analysis, operational experience, and our own perspective in understanding and addressing reliability concerns at scale. Our analysis reveals that while large jobs are most vulnerable to failures, smaller jobs make up the majority of jobs in the clusters and should be incorporated into optimization objectives. We identify key workload properties, compare them across clusters, and demonstrate essential reliability requirements for pushing the boundaries of ML training at scale. We hereby introduce a taxonomy of failures and key reliability metrics, analyze 11 months of data from two state-of-the-art ML environments with over 150 million A100 GPU hours and 4 million jobs. Building on our data, we fit a failure model to project Mean Time to Failure for various GPU scales. We further propose a method to estimate a related metric, Effective Training Time Ratio, as a function of job parameters, and we use this model to gauge the efficacy of potential software mitigations at scale. Our work provides valuable insights and future research directions for improving the reliability of AI supercomputer clusters, emphasizing the need for flexible, workload-agnostic, and reliability-aware infrastructure, system software, and algorithms.


Privacy-Preserving Contextual Bandits

arXiv.org Machine Learning

Contextual bandits are online learners that, given an input, select an arm and receive a reward for that arm. They use the reward as a learning signal and aim to maximize the total reward over the inputs. Contextual bandits are commonly used to solve recommendation or ranking problems. This paper considers a learning setting in which multiple parties aim to train a contextual bandit together in a private way: the parties aim to maximize the total reward but do not want to share any of the relevant information they possess with the other parties. Specifically, multiple parties have access to (different) features that may benefit the learner but that cannot be shared with other parties. One of the parties pulls the arm but other parties may not learn which arm was pulled. One party receives the reward but the other parties may not learn the reward value. This paper develops a privacy-preserving contextual bandit algorithm that combines secure multi-party computation with a differential private mechanism based on epsilon-greedy exploration in contextual bandits.


ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero

arXiv.org Machine Learning

The AlphaGo, AlphaGo Zero, and AlphaZero series of algorithms are a remarkable demonstration of deep reinforcement learning's capabilities, achieving superhuman performance in the complex game of Go with progressively increasing autonomy. However, many obstacles remain in the understanding of and usability of these promising approaches by the research community. Toward elucidating unresolved mysteries and facilitating future research, we propose ELF OpenGo, an open-source reimplementation of the AlphaZero algorithm. ELF OpenGo is the first open-source Go AI to convincingly demonstrate superhuman performance with a perfect (20:0) record against global top professionals. We apply ELF OpenGo to conduct extensive ablation studies, and to identify and analyze numerous interesting phenomena in both the model training and in the gameplay inference procedures. Our code, models, selfplay datasets, and auxiliary data are publicly available.