See, Simon
XAI4Extremes: An interpretable machine learning framework for understanding extreme-weather precursors under climate change
Wei, Jiawen, Bora, Aniruddha, Oommen, Vivek, Dong, Chenyu, Yang, Juntao, Adie, Jeff, Chen, Chen, See, Simon, Karniadakis, George, Mengaldo, Gianmarco
Extreme weather events are increasing in frequency and intensity due to climate change. This, in turn, is exacting a significant toll in communities worldwide. While prediction skills are increasing with advances in numerical weather prediction and artificial intelligence tools, extreme weather still present challenges. More specifically, identifying the precursors of such extreme weather events and how these precursors may evolve under climate change remain unclear. In this paper, we propose to use post-hoc interpretability methods to construct relevance weather maps that show the key extreme-weather precursors identified by deep learning models. We then compare this machine view with existing domain knowledge to understand whether deep learning models identified patterns in data that may enrich our understanding of extreme-weather precursors. We finally bin these relevant maps into different multi-year time periods to understand the role that climate change is having on these precursors. The experiments are carried out on Indochina heatwaves, but the methodology can be readily extended to other extreme weather events worldwide.
Unified Locomotion Transformer with Simultaneous Sim-to-Real Transfer for Quadrupeds
Liu, Dikai, Zhang, Tianwei, Yin, Jianxiong, See, Simon
Quadrupeds have gained rapid advancement in their capability of traversing across complex terrains. The adoption of deep Reinforcement Learning (RL), transformers and various knowledge transfer techniques can greatly reduce the sim-to-real gap. However, the classical teacher-student framework commonly used in existing locomotion policies requires a pre-trained teacher and leverages the privilege information to guide the student policy. With the implementation of large-scale models in robotics controllers, especially transformers-based ones, this knowledge distillation technique starts to show its weakness in efficiency, due to the requirement of multiple supervised stages. In this paper, we propose Unified Locomotion Transformer (ULT), a new transformer-based framework to unify the processes of knowledge transfer and policy optimization in a single network while still taking advantage of privilege information. The policies are optimized with reinforcement learning, next state-action prediction, and action imitation, all in just one training stage, to achieve zero-shot deployment. Evaluation results demonstrate that with ULT, optimal teacher and student policies can be obtained at the same time, greatly easing the difficulty in knowledge transfer, even with complex transformer-based models.
CondensNet: Enabling stable long-term climate simulations via hybrid deep learning models with adaptive physical constraints
Wang, Xin, Yang, Juntao, Adie, Jeff, See, Simon, Furtado, Kalli, Chen, Chen, Arcomano, Troy, Maulik, Romit, Mengaldo, Gianmarco
Accurate and efficient climate simulations are crucial for understanding Earth's evolving climate. However, current general circulation models (GCMs) face challenges in capturing unresolved physical processes, such as cloud and convection. A common solution is to adopt cloud resolving models, that provide more accurate results than the standard subgrid parametrisation schemes typically used in GCMs. However, cloud resolving models, also referred to as super paramtetrizations, remain computationally prohibitive. Hybrid modeling, which integrates deep learning with equation-based GCMs, offers a promising alternative but often struggles with long-term stability and accuracy issues. In this work, we find that water vapor oversaturation during condensation is a key factor compromising the stability of hybrid models. To address this, we introduce CondensNet, a novel neural network architecture that embeds a self-adaptive physical constraint to correct unphysical condensation processes. CondensNet effectively mitigates water vapor oversaturation, enhancing simulation stability while maintaining accuracy and improving computational efficiency compared to super parameterization schemes. We integrate CondensNet into a GCM to form PCNN-GCM (Physics-Constrained Neural Network GCM), a hybrid deep learning framework designed for long-term stable climate simulations in real-world conditions, including ocean and land. PCNN-GCM represents a significant milestone in hybrid climate modeling, as it shows a novel way to incorporate physical constraints adaptively, paving the way for accurate, lightweight, and stable long-term climate simulations.
LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning
Zheng, Tianshi, Cheng, Jiayang, Li, Chunyang, Shi, Haochen, Wang, Zihao, Bai, Jiaxin, Song, Yangqiu, Wong, Ginny Y., See, Simon
Modern large language models (LLMs) employ various forms of logical inference, both implicitly and explicitly, when addressing reasoning tasks. Understanding how to optimally leverage these inference paradigms is critical for advancing LLMs' reasoning capabilities. This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning -- a fundamental cognitive task -- that is systematically parameterized across three dimensions: modality (textual, visual, symbolic), difficulty (easy, medium, hard), and task format (multiple-choice or free-text generation). We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines across these dimensions, and demonstrate that our findings generalize to broader in-context learning tasks. Additionally, we investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference in LLM reasoning. This exploratory study provides a foundation for future research in enhancing LLM reasoning through systematic logical inference strategies.
Feature-based Graph Attention Networks Improve Online Continual Learning
Sim, Adjovi, Wang, Zhengkui, Ng, Aik Beng, De Mello, Shalini, See, Simon, Byeon, Wonmin
Online continual learning for image classification is crucial for models to adapt to new data while retaining knowledge of previously learned tasks. This capability is essential to address real-world challenges involving dynamic environments and evolving data distributions. Traditional approaches predominantly employ Convolutional Neural Networks, which are limited to processing images as grids and primarily capture local patterns rather than relational information. Although the emergence of transformer architectures has improved the ability to capture relationships, these models often require significantly larger resources. In this paper, we present a novel online continual learning framework based on Graph Attention Networks (GATs), which effectively capture contextual relationships and dynamically update the task-specific representation via learned attention weights. Our approach utilizes a pre-trained feature extractor to convert images into graphs using hierarchical feature maps, representing information at varying levels of granularity. These graphs are then processed by a GAT and incorporate an enhanced global pooling strategy to improve classification performance for continual learning. In addition, we propose the rehearsal memory duplication technique that improves the representation of the previous tasks while maintaining the memory budget. Comprehensive evaluations on benchmark datasets, including SVHN, CIFAR10, CIFAR100, and MiniImageNet, demonstrate the superiority of our method compared to the state-of-the-art methods.
Enhancing Modality Representation and Alignment for Multimodal Cold-start Active Learning
Shen, Meng, Wei, Yake, Yin, Jianxiong, Rajan, Deepu, Hu, Di, See, Simon
Training multimodal models requires a large amount of labeled data. Active learning (AL) aim to reduce labeling costs. Most AL methods employ warm-start approaches, which rely on sufficient labeled data to train a well-calibrated model that can assess the uncertainty and diversity of unlabeled data. However, when assembling a dataset, labeled data are often scarce initially, leading to a cold-start problem. Additionally, most AL methods seldom address multimodal data, highlighting a research gap in this field. Our research addresses these issues by developing a two-stage method for Multi-Modal Cold-Start Active Learning (MMCSAL). Firstly, we observe the modality gap, a significant distance between the centroids of representations from different modalities, when only using cross-modal pairing information as self-supervision signals. This modality gap affects data selection process, as we calculate both uni-modal and cross-modal distances. To address this, we introduce uni-modal prototypes to bridge the modality gap. Secondly, conventional AL methods often falter in multimodal scenarios where alignment between modalities is overlooked. Therefore, we propose enhancing cross-modal alignment through regularization, thereby improving the quality of selected multimodal data pairs in AL. Finally, our experiments demonstrate MMCSAL's efficacy in selecting multimodal data pairs across three multimodal datasets.
On-Device LLMs for SMEs: Challenges and Opportunities
Yee, Jeremy Stephen Gabriel, Ng, Pai Chet, Wang, Zhengkui, McLoughlin, Ian, Ng, Aik Beng, See, Simon
This paper presents a systematic review of the infrastructure requirements for deploying Large Language Models (LLMs) on-device within the context of small and medium-sized enterprises (SMEs), focusing on both hardware and software perspectives. From the hardware viewpoint, we discuss the utilization of processing units like GPUs and TPUs, efficient memory and storage solutions, and strategies for effective deployment, addressing the challenges of limited computational resources typical in SME settings. From the software perspective, we explore framework compatibility, operating system optimization, and the use of specialized libraries tailored for resource-constrained environments. The review is structured to first identify the unique challenges faced by SMEs in deploying LLMs on-device, followed by an exploration of the opportunities that both hardware innovations and software adaptations offer to overcome these obstacles. Such a structured review provides practical insights, contributing significantly to the community by enhancing the technological resilience of SMEs in integrating LLMs.
A General-Purpose Multimodal Foundation Model for Dermatology
Yan, Siyuan, Yu, Zhen, Primiero, Clare, Vico-Alonso, Cristina, Wang, Zhonghua, Yang, Litao, Tschandl, Philipp, Hu, Ming, Tan, Gin, Tang, Vincent, Ng, Aik Beng, Powell, David, Bonnington, Paul, See, Simon, Janda, Monika, Mar, Victoria, Kittler, Harald, Soyer, H. Peter, Ge, Zongyuan
Diagnosing and treating skin diseases require advanced visual skills across multiple domains and the ability to synthesize information from various imaging modalities. Current deep learning models, while effective at specific tasks such as diagnosing skin cancer from dermoscopic images, fall short in addressing the complex, multimodal demands of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on a dataset of over 2 million real-world images of skin diseases, sourced from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse datasets covering a range of clinical tasks, including skin cancer screening, phenotype assessment and risk stratification, diagnosis of neoplastic and inflammatory skin diseases, skin lesion segmentation, change monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models even when using only 5-10% of labeled data. PanDerm's clinical utility was demonstrated through reader studies in real-world clinical settings across multiple imaging modalities. It outperformed clinicians by 10.2% in early-stage melanoma detection accuracy and enhanced clinicians' multiclass skin cancer diagnostic accuracy by 11% in a collaborative human-AI setting. Additionally, PanDerm demonstrated robust performance across diverse demographic factors, including different body locations, age groups, genders, and skin tones. The strong results in benchmark evaluations and real-world clinical scenarios suggest that PanDerm could enhance the management of skin diseases and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare.
Persona Knowledge-Aligned Prompt Tuning Method for Online Debate
Chan, Chunkit, Jiayang, Cheng, Liu, Xin, Yim, Yauwai, Jiang, Yuxin, Deng, Zheye, Li, Haoran, Song, Yangqiu, Wong, Ginny Y., See, Simon
Debate is the process of exchanging viewpoints or convincing others on a particular issue. Recent research has provided empirical evidence that the persuasiveness of an argument is determined not only by language usage but also by communicator characteristics. Researchers have paid much attention to aspects of languages, such as linguistic features and discourse structures, but combining argument persuasiveness and impact with the social personae of the audience has not been explored due to the difficulty and complexity. We have observed the impressive simulation and personification capability of ChatGPT, indicating a giant pre-trained language model may function as an individual to provide personae and exert unique influences based on diverse background knowledge. Therefore, we propose a persona knowledge-aligned framework for argument quality assessment tasks from the audience side. This is the first work that leverages the emergence of ChatGPT and injects such audience personae knowledge into smaller language models via prompt tuning. The performance of our pipeline demonstrates significant and consistent improvement compared to competitive architectures.
TCM-FTP: Fine-Tuning Large Language Models for Herbal Prescription Prediction
Zhou, Xingzhi, Dong, Xin, Li, Chunhao, Bai, Yuning, Xu, Yulong, Cheung, Ka Chun, See, Simon, Song, Xinpeng, Zhang, Runshun, Zhou, Xuezhong, Zhang, Nevin L.
Traditional Chinese medicine (TCM) relies on specific combinations of herbs in prescriptions to treat symptoms and signs, a practice that spans thousands of years. Predicting TCM prescriptions presents a fascinating technical challenge with practical implications. However, this task faces limitations due to the scarcity of high-quality clinical datasets and the intricate relationship between symptoms and herbs. To address these issues, we introduce DigestDS, a new dataset containing practical medical records from experienced experts in digestive system diseases. We also propose a method, TCM-FTP (TCM Fine-Tuning Pre-trained), to leverage pre-trained large language models (LLMs) through supervised fine-tuning on DigestDS. Additionally, we enhance computational efficiency using a low-rank adaptation technique. TCM-FTP also incorporates data augmentation by permuting herbs within prescriptions, capitalizing on their order-agnostic properties. Impressively, TCM-FTP achieves an F1-score of 0.8031, surpassing previous methods significantly. Furthermore, it demonstrates remarkable accuracy in dosage prediction, achieving a normalized mean square error of 0.0604. In contrast, LLMs without fine-tuning perform poorly. Although LLMs have shown capabilities on a wide range of tasks, this work illustrates the importance of fine-tuning for TCM prescription prediction, and we have proposed an effective way to do that.