Sederberg, Per
Binary Linear Classification and Feature Selection via Generalized Approximate Message Passing
Ziniel, Justin, Schniter, Philip, Sederberg, Per
For the problem of binary linear classification and feature selection, we propose algorithmic approaches to classifier design based on the generalized approximate message passing (GAMP) algorithm, recently proposed in the context of compressive sensing. We are particularly motivated by problems where the number of features greatly exceeds the number of training examples, but where only a few features suffice for accurate classification. We show that sum-product GAMP can be used to (approximately) minimize the classification error rate and max-sum GAMP can be used to minimize a wide variety of regularized loss functions. Furthermore, we describe an expectation-maximization (EM)-based scheme to learn the associated model parameters online, as an alternative to cross-validation, and we show that GAMP's state-evolution framework can be used to accurately predict the misclassification rate. Finally, we present a detailed numerical study to confirm the accuracy, speed, and flexibility afforded by our GAMP-based approaches to binary linear classification and feature selection.
A Bayesian Analysis of Dynamics in Free Recall
Socher, Richard, Gershman, Samuel, Sederberg, Per, Norman, Kenneth, Perotte, Adler J., Blei, David M.
We develop a probabilistic model of human memory performance in free recall experiments. In these experiments, a subject first studies a list of words and then tries to recall them. To model these data, we draw on both previous psychological research and statistical topic models of text documents. We assume that memories are formed by assimilating the semantic meaning of studied words (represented as a distribution over topics) into a slowly changing latent context (represented in the same space). During recall, this context is reinstated and used as a cue for retrieving studied words. By conceptualizing memory retrieval as a dynamic latent variable model, we are able to use Bayesian inference to represent uncertainty and reason about the cognitive processes underlying memory. We present a particle filter algorithm for performing approximate posterior inference, and evaluate our model on the prediction of recalled words in experimental data. By specifying the model hierarchically, we are also able to capture inter-subject variability.