Sciarra, Alessandro
SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms
Chatterjee, Soumick, Mattern, Hendrik, Dörner, Marc, Sciarra, Alessandro, Dubost, Florian, Schnurre, Hannes, Khatun, Rupali, Yu, Chun-Chih, Hsieh, Tsung-Lin, Tsai, Yi-Shan, Fang, Yi-Zeng, Yang, Yung-Ching, Huang, Juinn-Dar, Xu, Marshall, Liu, Siyu, Ribeiro, Fernanda L., Bollmann, Saskia, Chintalapati, Karthikesh Varma, Radhakrishna, Chethan Mysuru, Kumara, Sri Chandana Hudukula Ram, Sutrave, Raviteja, Qayyum, Abdul, Mazher, Moona, Razzak, Imran, Rodero, Cristobal, Niederren, Steven, Lin, Fengming, Xia, Yan, Wang, Jiacheng, Qiu, Riyu, Wang, Liansheng, Panah, Arya Yazdan, Jurdi, Rosana El, Fu, Guanghui, Arslan, Janan, Vaillant, Ghislain, Valabregue, Romain, Dormont, Didier, Stankoff, Bruno, Colliot, Olivier, Vargas, Luisa, Chacón, Isai Daniel, Pitsiorlas, Ioannis, Arbeláez, Pablo, Zuluaga, Maria A., Schreiber, Stefanie, Speck, Oliver, Nürnberger, Andreas
The human brain receives nutrients and oxygen through an intricate network of blood vessels. Pathology affecting small vessels, at the mesoscopic scale, represents a critical vulnerability within the cerebral blood supply and can lead to severe conditions, such as Cerebral Small Vessel Diseases. The advent of 7 Tesla MRI systems has enabled the acquisition of higher spatial resolution images, making it possible to visualise such vessels in the brain. However, the lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms. To address this, the SMILE-UHURA challenge was organised. This challenge, held in conjunction with the ISBI 2023, in Cartagena de Indias, Colombia, aimed to provide a platform for researchers working on related topics. The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI. This dataset was created through a combination of automated pre-segmentation and extensive manual refinement. In this manuscript, sixteen submitted methods and two baseline methods are compared both quantitatively and qualitatively on two different datasets: held-out test MRAs from the same dataset as the training data (with labels kept secret) and a separate 7T ToF MRA dataset where both input volumes and labels are kept secret. The results demonstrate that most of the submitted deep learning methods, trained on the provided training dataset, achieved reliable segmentation performance. Dice scores reached up to 0.838 $\pm$ 0.066 and 0.716 $\pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $\pm$ 0.15.
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
Chatterjee, Soumick, Gaidzik, Franziska, Sciarra, Alessandro, Mattern, Hendrik, Janiga, Gábor, Speck, Oliver, Nürnberger, Andreas, Pathiraja, Sahani
In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification. We propose the PULASki for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems. We analyse our method for two structurally different segmentation tasks (intracranial vessel and multiple sclerosis (MS) lesion) and compare our results to four well-established baselines in terms of quantitative metrics and qualitative output. Empirical results demonstrate the PULASKi method outperforms all baselines at the 5\% significance level. The generated segmentations are shown to be much more anatomically plausible than in the 2D case, particularly for the vessel task. Our method can also be applied to a wide range of multi-label segmentation tasks and and is useful for downstream tasks such as hemodynamic modelling (computational fluid dynamics and data assimilation), clinical decision making, and treatment planning.
Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Sciarra, Alessandro, Chatterjee, Soumick, Dünnwald, Max, Placidi, Giuseppe, Nürnberger, Andreas, Speck, Oliver, Oeltze-Jafra, Steffen
Motion artefacts in magnetic resonance brain images can have a strong impact on diagnostic confidence. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. Motion artefacts can alter the delineation of structures such as the brain, lesions or tumours and may require a repeat scan. Otherwise, an inaccurate (e.g. correct pathology but wrong severity) or incorrect diagnosis (e.g. wrong pathology) may occur. "\textit{Image quality assessment}" as a fast, automated step right after scanning can assist in deciding if the acquired images are diagnostically sufficient. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network is proposed in this work. Additionally, a classification into different groups - by subdividing with SSIM ranges - is evaluated. Importantly, this method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. The mean and standard deviation of residuals' distribution were $\mu=-0.0009$ and $\sigma=0.0139$, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The results show that the proposed method could be a tool for supporting neuro-radiologists and radiographers in evaluating image quality quickly.