Goto

Collaborating Authors

 Schneider, Steffen


Time-series attribution maps with regularized contrastive learning

arXiv.org Machine Learning

Gradient-based attribution methods aim to explain decisions of deep learning models but so far lack identifiability guarantees. Here, we propose a method to generate attribution maps with identifiability guarantees by developing a regularized contrastive learning algorithm trained on time-series data plus a new attribution method called Inverted Neuron Gradient (collectively named xCEBRA). We show theoretically that xCEBRA has favorable properties for identifying the Jacobian matrix of the data generating process. Empirically, we demonstrate robust approximation of zero vs. non-zero entries in the ground-truth attribution map on synthetic datasets, and significant improvements across previous attribution methods based on feature ablation, Shapley values, and other gradient-based methods. Our work constitutes a first example of identifiable inference of time-series attribution maps and opens avenues to a better understanding of time-series data, such as for neural dynamics and decision-processes within neural networks.


Sparse autoencoders reveal selective remapping of visual concepts during adaptation

arXiv.org Artificial Intelligence

Adapting foundation models for specific purposes has become a standard approach to build machine learning systems for downstream applications. Yet, it is an open question which mechanisms take place during adaptation. Here we develop a new Sparse Autoencoder (SAE) for the CLIP vision transformer, named PatchSAE, to extract interpretable concepts at granular levels (e.g. shape, color, or semantics of an object) and their patch-wise spatial attributions. We explore how these concepts influence the model output in downstream image classification tasks and investigate how recent state-of-the-art prompt-based adaptation techniques change the association of model inputs to these concepts. While activations of concepts slightly change between adapted and non-adapted models, we find that the majority of gains on common adaptation tasks can be explained with the existing concepts already present in the non-adapted foundation model. This work provides a concrete framework to train and use SAEs for Vision Transformers and provides insights into explaining adaptation mechanisms.


Self-supervised contrastive learning performs non-linear system identification

arXiv.org Machine Learning

Self-supervised learning (SSL) approaches have brought tremendous success across many tasks and domains. It has been argued that these successes can be attributed to a link between SSL and identifiable representation learning: Temporal structure and auxiliary variables ensure that latent representations are related to the true underlying generative factors of the data. Here, we deepen this connection and show that SSL can perform system identification in latent space. We propose DynCL, a framework to uncover linear, switching linear and non-linear dynamics under a non-linear observation model, give theoretical guarantees and validate them empirically.


SuperAnimal pretrained pose estimation models for behavioral analysis

arXiv.org Artificial Intelligence

Quantification of behavior is critical in applications ranging from neuroscience, veterinary medicine and animal conservation efforts. A common key step for behavioral analysis is first extracting relevant keypoints on animals, known as pose estimation. However, reliable inference of poses currently requires domain knowledge and manual labeling effort to build supervised models. We present a series of technical innovations that enable a new method, collectively called SuperAnimal, to develop unified foundation models that can be used on over 45 species, without additional human labels. Concretely, we introduce a method to unify the keypoint space across differently labeled datasets (via our generalized data converter) and for training these diverse datasets in a manner such that they don't catastrophically forget keypoints given the unbalanced inputs (via our keypoint gradient masking and memory replay approaches). These models show excellent performance across six pose benchmarks. Then, to ensure maximal usability for end-users, we demonstrate how to fine-tune the models on differently labeled data and provide tooling for unsupervised video adaptation to boost performance and decrease jitter across frames. If the models are fine-tuned, we show SuperAnimal models are 10-100$\times$ more data efficient than prior transfer-learning-based approaches. We illustrate the utility of our models in behavioral classification in mice and gait analysis in horses. Collectively, this presents a data-efficient solution for animal pose estimation.


If your data distribution shifts, use self-learning

arXiv.org Artificial Intelligence

We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling are simple and effective at improving performance of a deployed computer vision model under systematic domain shifts. We conduct a wide range of large-scale experiments and show consistent improvements irrespective of the model architecture, the pre-training technique or the type of distribution shift. At the same time, self-learning is simple to use in practice because it does not require knowledge or access to the original training data or scheme, is robust to hyperparameter choices, is straight-forward to implement and requires only a few adaptation epochs. This makes self-learning techniques highly attractive for any practitioner who applies machine learning algorithms in the real world.


RDumb: A simple approach that questions our progress in continual test-time adaptation

arXiv.org Artificial Intelligence

Test-Time Adaptation (TTA) allows to update pre-trained models to changing data distributions at deployment time. While early work tested these algorithms for individual fixed distribution shifts, recent work proposed and applied methods for continual adaptation over long timescales. To examine the reported progress in the field, we propose the Continually Changing Corruptions (CCC) benchmark to measure asymptotic performance of TTA techniques. We find that eventually all but one state-of-the-art methods collapse and perform worse than a non-adapting model, including models specifically proposed to be robust to performance collapse. In addition, we introduce a simple baseline, "RDumb", that periodically resets the model to its pretrained state. RDumb performs better or on par with the previously proposed state-of-the-art in all considered benchmarks. Our results show that previous TTA approaches are neither effective at regularizing adaptation to avoid collapse nor able to outperform a simplistic resetting strategy.


Learnable latent embeddings for joint behavioral and neural analysis

arXiv.org Artificial Intelligence

Mapping behavioral actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioral data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data. Here, we fill this gap with a novel method, CEBRA, that jointly uses behavioral and neural data in a hypothesis- or discovery-driven manner to produce consistent, high-performance latent spaces. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, and rapid, high-accuracy decoding of natural movies from visual cortex.


Unsupervised Object Learning via Common Fate

arXiv.org Machine Learning

In human vision, the Principle of Common Fate of Gestalt Psychology (Wertheimer, 2012) has been shown to play an important role for object learning (Spelke, 1990). It posits that elements that are moving together tend to be perceived as one--a perceptual bias that may have evolved to be able to recognize camouflaged predators (Troscianko et al., 2009). In our work, we show that this principle can be successfully used also for machine vision by using it in a multi-stage object learning approach (Figure 1): First, we use unsupervised motion segmentation to obtain a candidate segmentation of a video frame. Second, we train generative object and background models on this segmentation. While the regions obtained by the motion segmentation are caused by objects moving in 3D, only visible parts can be segmented. To learn the actual objects (i.e., the causes), a crucial task for the object model is learning to generalize beyond the occlusions present in its input data. To measure success, we provide a dataset including object ground truth. As the last stage, we show that the learned object and background models can be combined into a flexible scene model that allows sampling manipulated novel scenes. Thus, in contrast to existing object-centric models trained end-to-end, our work aims at decomposing object learning into evaluable subproblems and testing the potential of exploiting object motions for building scalable object-centric models that allow for causally meaningful interventions in generation.


Improving robustness against common corruptions by covariate shift adaptation

arXiv.org Machine Learning

Today's state-of-the-art machine vision models are vulnerable to image corruptions like blurring or compression artefacts, limiting their performance in many real-world applications. We here argue that popular benchmarks to measure model robustness against common corruptions (like ImageNet-C) underestimate model robustness in many (but not all) application scenarios. The key insight is that in many scenarios, multiple unlabeled examples of the corruptions are available and can be used for unsupervised online adaptation. Replacing the activation statistics estimated by batch normalization on the training set with the statistics of the corrupted images consistently improves the robustness across 25 different popular computer vision models. Using the corrected statistics, ResNet-50 reaches 62.2% mCE on ImageNet-C compared to 76.7% without adaptation. With the more robust DeepAugment+AugMix model, we improve the state of the art achieved by a ResNet50 model up to date from 53.6% mCE to 45.4% mCE. Even adapting to a single sample improves robustness for the ResNet-50 and AugMix models, and 32 samples are sufficient to improve the current state of the art for a ResNet-50 architecture. We argue that results with adapted statistics should be included whenever reporting scores in corruption benchmarks and other out-of-distribution generalization settings.