Goto

Collaborating Authors

 Schneider, Phillip


CarMem: Enhancing Long-Term Memory in LLM Voice Assistants through Category-Bounding

arXiv.org Artificial Intelligence

In today's assistant landscape, personalisation enhances interactions, fosters long-term relationships, and deepens engagement. However, many systems struggle with retaining user preferences, leading to repetitive user requests and disengagement. Furthermore, the unregulated and opaque extraction of user preferences in industry applications raises significant concerns about privacy and trust, especially in regions with stringent regulations like Europe. In response to these challenges, we propose a long-term memory system for voice assistants, structured around predefined categories. This approach leverages Large Language Models to efficiently extract, store, and retrieve preferences within these categories, ensuring both personalisation and transparency. We also introduce a synthetic multi-turn, multi-session conversation dataset (CarMem), grounded in real industry data, tailored to an in-car voice assistant setting. Benchmarked on the dataset, our system achieves an F1-score of .78 to .95 in preference extraction, depending on category granularity. Our maintenance strategy reduces redundant preferences by 95% and contradictory ones by 92%, while the accuracy of optimal retrieval is at .87. Collectively, the results demonstrate the system's suitability for industrial applications.


Conversational Exploratory Search of Scholarly Publications Using Knowledge Graphs

arXiv.org Artificial Intelligence

Traditional search methods primarily depend on string matches, while semantic search targets concept-based matches by recognizing underlying intents and contextual meanings of search terms. Semantic search is particularly beneficial for discovering scholarly publications where differences in vocabulary between users' search terms and document content are common, often yielding irrelevant search results. Many scholarly search engines have adopted knowledge graphs to represent semantic relations between authors, publications, and research concepts. However, users may face challenges when navigating these graphical search interfaces due to the complexity and volume of data, which impedes their ability to discover publications effectively. To address this problem, we developed a conversational search system for exploring scholarly publications using a knowledge graph. We outline the methodical approach for designing and implementing the proposed system, detailing its architecture and functional components. To assess the system's effectiveness, we employed various performance metrics and conducted a human evaluation with 40 participants, demonstrating how the conversational interface compares against a graphical interface with traditional text search. The findings from our evaluation provide practical insights for advancing the design of conversational search systems.


MedREQAL: Examining Medical Knowledge Recall of Large Language Models via Question Answering

arXiv.org Artificial Intelligence

In recent years, Large Language Models (LLMs) have demonstrated an impressive ability to encode knowledge during pre-training on large text corpora. They can leverage this knowledge for downstream tasks like question answering (QA), even in complex areas involving health topics. Considering their high potential for facilitating clinical work in the future, understanding the quality of encoded medical knowledge and its recall in LLMs is an important step forward. In this study, we examine the capability of LLMs to exhibit medical knowledge recall by constructing a novel dataset derived from systematic reviews -- studies synthesizing evidence-based answers for specific medical questions. Through experiments on the new MedREQAL dataset, comprising question-answer pairs extracted from rigorous systematic reviews, we assess six LLMs, such as GPT and Mixtral, analyzing their classification and generation performance. Our experimental insights into LLM performance on the novel biomedical QA dataset reveal the still challenging nature of this task.


Towards Harnessing Large Language Models for Comprehension of Conversational Grounding

arXiv.org Artificial Intelligence

Conversational grounding is a collaborative mechanism for establishing mutual knowledge among participants engaged in a dialogue. This experimental study analyzes information-seeking conversations to investigate the capabilities of large language models in classifying dialogue turns related to explicit or implicit grounding and predicting grounded knowledge elements. Our experimental results reveal challenges encountered by large language models in the two tasks and discuss ongoing research efforts to enhance large language model-based conversational grounding comprehension through pipeline architectures and knowledge bases. These initiatives aim to develop more effective dialogue systems that are better equipped to handle the intricacies of grounded knowledge in conversations.


Enterprise Use Cases Combining Knowledge Graphs and Natural Language Processing

arXiv.org Artificial Intelligence

As modern organizations continuously adapt to the evolving requirements of the digital age, the importance of successfully managing enterprise data has never been greater. In this article, we define the term'enterprise' as a large-scale business, which operates on a national or international level and typically involves significant risks and resources. The competitive advantage of data-driven decisions affects all industry sectors and nearly every part of the value chain (Schopf et al. 2022b). For example, market trends are analyzed for business development, production is optimized through process metrics, and customer reviews are monitored for predictive maintenance. However, raw data alone is insufficient for decision-making. In order to become actionable information, data has to be endowed with meaning and purpose (Rowley 2007). This can be achieved by data enrichment through a relevant context. A compelling approach to achieve this is by modeling knowledge in the form of graph connections between data items (Martin et al. 2021). In view of the above, knowledge graphs (KGs) have emerged as a powerful representation for integrating knowledge from multiple information sources.


A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation

arXiv.org Artificial Intelligence

Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance.


Evaluating Large Language Models in Semantic Parsing for Conversational Question Answering over Knowledge Graphs

arXiv.org Artificial Intelligence

Conversational question answering systems often rely on semantic parsing to enable interactive information retrieval, which involves the generation of structured database queries from a natural language input. For information-seeking conversations about facts stored within a knowledge graph, dialogue utterances are transformed into graph queries in a process that is called knowledge-based conversational question answering. This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task. Through a series of experiments on an extensive benchmark dataset, we compare models of varying sizes with different prompting techniques and identify common issue types in the generated output. Our results demonstrate that large language models are capable of generating graph queries from dialogues, with significant improvements achievable through few-shot prompting and fine-tuning techniques, especially for smaller models that exhibit lower zero-shot performance.


From Data to Dialogue: Leveraging the Structure of Knowledge Graphs for Conversational Exploratory Search

arXiv.org Artificial Intelligence

Exploratory search is an open-ended information retrieval process that aims at discovering knowledge about a topic or domain rather than searching for a specific answer or piece of information. Conversational interfaces are particularly suitable for supporting exploratory search, allowing users to refine queries and examine search results through interactive dialogues. In addition to conversational search interfaces, knowledge graphs are also useful in supporting information exploration due to their rich semantic representation of data items. In this study, we demonstrate the synergistic effects of combining knowledge graphs and conversational interfaces for exploratory search, bridging the gap between structured and unstructured information retrieval. To this end, we propose a knowledge-driven dialogue system for exploring news articles by asking natural language questions and using the graph structure to navigate between related topics. Based on a user study with 54 participants, we empirically evaluate the effectiveness of the graph-based exploratory search and discuss design implications for developing such systems.


HealthFC: A Dataset of Health Claims for Evidence-Based Medical Fact-Checking

arXiv.org Artificial Intelligence

Seeking health-related advice on the internet has become a common practice in the digital era. Determining the trustworthiness of medical claims found online and finding appropriate evidence for this information is increasingly challenging. Fact-checking has emerged as an approach to assess the veracity of factual claims using evidence from credible knowledge sources. To help advance the automation of this task, in this paper, we introduce a novel dataset of 750 health-related claims, labeled for veracity by medical experts and backed with evidence from appropriate clinical studies. We provide an analysis of the dataset, highlighting its characteristics and challenges. The dataset can be used for Machine Learning tasks related to automated fact-checking such as evidence retrieval, veracity prediction, and explanation generation. For this purpose, we provide baseline models based on different approaches, examine their performance, and discuss the findings.


Voice-Based Conversational Agents and Knowledge Graphs for Improving News Search in Assisted Living

arXiv.org Artificial Intelligence

As the healthcare sector is facing major challenges, such as aging populations, staff shortages, and common chronic diseases, delivering high-quality care to individuals has become very difficult. Conversational agents have shown to be a promising technology to alleviate some of these issues. In the form of digital health assistants, they have the potential to improve the everyday life of the elderly and chronically ill people. This includes, for example, medication reminders, routine checks, or social chit-chat. In addition, conversational agents can satisfy the fundamental need of having access to information about daily news or local events, which enables individuals to stay informed and connected with the world around them. However, finding relevant news sources and navigating the plethora of news articles available online can be overwhelming, particularly for those who may have limited technological literacy or health-related impairments. To address this challenge, we propose an innovative solution that combines knowledge graphs and conversational agents for news search in assisted living. By leveraging graph databases to semantically structure news data and implementing an intuitive voice-based interface, our system can help care-dependent people to easily discover relevant news articles and give personalized recommendations. We explain our design choices, provide a system architecture, share insights of an initial user test, and give an outlook on planned future work.