Goto

Collaborating Authors

 Schlesinger, Claire


Creating and Repairing Robot Programs in Open-World Domains

arXiv.org Artificial Intelligence

Using Large Language Models (LLMs) to produce robot programs from natural language has allowed for robot systems that can complete a higher diversity of tasks. However, LLM-generated programs may be faulty, either due to ambiguity in instructions, misinterpretation of the desired task, or missing information about the world state. As these programs run, the state of the world changes and they gather new information. When a failure occurs, it is important that they recover from the current world state and avoid repeating steps that they they previously completed successfully. We propose RoboRepair, a system which traces the execution of a program up until error, and then runs an LLM-produced recovery program that minimizes repeated actions. To evaluate the efficacy of our system, we create a benchmark consisting of eleven tasks with various error conditions that require the generation of a recovery program. We compare the efficiency of the recovery program to a plan built with an oracle that has foreknowledge of future errors.


StarCoder: may the source be with you!

arXiv.org Artificial Intelligence

The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python, can be prompted to achieve 40\% pass@1 on HumanEval, and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.


Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs

arXiv.org Artificial Intelligence

Over the past few years, Large Language Models of Code (Code LLMs) have started to have a significant impact on programming practice. Code LLMs are also emerging as building blocks for research in programming languages and software engineering. However, Code LLMs produce impressive results on programming languages that are well represented in their training data (e.g., Java, Python, or JavaScript), but struggle with low-resource languages that have limited training data available. Low resource languages include OCaml, Racket, and several others. This paper presents an effective approach for boosting the performance of Code LLMs on low-resource languages using semi-synthetic data. Our approach, MultiPL-T, translates training data from high-resource languages into training data for low-resource languages in the following way. 1) We use a Code LLM to synthesize tests for commented code from a high-resource language, filtering out faulty tests and code with low test coverage. 2) We use a Code LLM to translate Python code to a target low-resource language, and use tests to validate the translation. We apply this approach to generate tens of thousands of validated training items for Julia, Lua, OCaml, R, and Racket. Furthermore, we use an open model (StarCoderBase) with open training data (The Stack), which allows us to decontaminate benchmarks, train models without violating licenses, and run experiments that could not otherwise be done. With MultiPL-T generated data, we present fine-tuned versions of StarCoderBase and Code Llama for Julia, Lua, OCaml, R, and Racket. On established benchmarks (MultiPL-E), these models outperform other open Code LLMs. The MultiPL-T approach is easy to apply to new languages, and is significantly more efficient and effective than alternatives such as training longer.


Deploying and Evaluating LLMs to Program Service Mobile Robots

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have spurred interest in using them for generating robot programs from natural language, with promising initial results. We investigate the use of LLMs to generate programs for service mobile robots leveraging mobility, perception, and human interaction skills, and where accurate sequencing and ordering of actions is crucial for success. We contribute CodeBotler, an open-source robot-agnostic tool to program service mobile robots from natural language, and RoboEval, a benchmark for evaluating LLMs' capabilities of generating programs to complete service robot tasks. CodeBotler performs program generation via few-shot prompting of LLMs with an embedded domain-specific language (eDSL) in Python, and leverages skill abstractions to deploy generated programs on any general-purpose mobile robot. RoboEval evaluates the correctness of generated programs by checking execution traces starting with multiple initial states, and checking whether the traces satisfy temporal logic properties that encode correctness for each task. RoboEval also includes multiple prompts per task to test for the robustness of program generation. We evaluate several popular state-of-the-art LLMs with the RoboEval benchmark, and perform a thorough analysis of the modes of failures, resulting in a taxonomy that highlights common pitfalls of LLMs at generating robot programs. We release our code and benchmark at https://amrl.cs.utexas.edu/codebotler/.