Goto

Collaborating Authors

 Schiele, Gregor


Resource-aware Mixed-precision Quantization for Enhancing Deployability of Transformers for Time-series Forecasting on Embedded FPGAs

arXiv.org Artificial Intelligence

This study addresses the deployment challenges of integer-only quantized Transformers on resource-constrained embedded FPGAs (Xilinx Spartan-7 XC7S15). We enhanced the flexibility of our VHDL template by introducing a selectable resource type for storing intermediate results across model layers, thereby breaking the deployment bottleneck by utilizing BRAM efficiently. Moreover, we developed a resource-aware mixed-precision quantization approach that enables researchers to explore hardware-level quantization strategies without requiring extensive expertise in Neural Architecture Search. This method provides accurate resource utilization estimates with a precision discrepancy as low as 3%, compared to actual deployment metrics. Compared to previous work, our approach has successfully facilitated the deployment of model configurations utilizing mixed-precision quantization, thus overcoming the limitations inherent in five previously non-deployable configurations with uniform quantization bitwidths. Consequently, this research enhances the applicability of Transformers in embedded systems, facilitating a broader range of Transformer-powered applications on edge devices.


Integer-only Quantized Transformers for Embedded FPGA-based Time-series Forecasting in AIoT

arXiv.org Artificial Intelligence

This paper presents the design of a hardware accelerator for Transformers, optimized for on-device time-series forecasting in AIoT systems. It integrates integer-only quantization and Quantization-Aware Training with optimized hardware designs to realize 6-bit and 4-bit quantized Transformer models, which achieved precision comparable to 8-bit quantized models from related research. Utilizing a complete implementation on an embedded FPGA (Xilinx Spartan-7 XC7S15), we examine the feasibility of deploying Transformer models on embedded IoT devices. This includes a thorough analysis of achievable precision, resource utilization, timing, power, and energy consumption for on-device inference. Our results indicate that while sufficient performance can be attained, the optimization process is not trivial. For instance, reducing the quantization bitwidth does not consistently result in decreased latency or energy consumption, underscoring the necessity of systematically exploring various optimization combinations. Compared to an 8-bit quantized Transformer model in related studies, our 4-bit quantized Transformer model increases test loss by only 0.63%, operates up to 132.33x faster, and consumes 48.19x less energy.


An Automated Approach to Collecting and Labeling Time Series Data for Event Detection Using Elastic Node Hardware

arXiv.org Artificial Intelligence

Recent advancements in IoT technologies have underscored the importance of using sensor data to understand environmental contexts effectively. This paper introduces a novel embedded system designed to autonomously label sensor data directly on IoT devices, thereby enhancing the efficiency of data collection methods. We present an integrated hardware and software solution equipped with specialized labeling sensors that streamline the capture and labeling of diverse types of sensor data. By implementing local processing with lightweight labeling methods, our system minimizes the need for extensive data transmission and reduces dependence on external resources. Experimental validation with collected data and a Convolutional Neural Network (CNN) model achieved a high classification accuracy of up to 91.67%, as confirmed through 4-fold cross-validation. These results demonstrate the system's robust capability to collect audio and vibration data with correct labels.


Towards Auto-Building of Embedded FPGA-based Soft Sensors for Wastewater Flow Estimation

arXiv.org Artificial Intelligence

Executing flow estimation using Deep Learning (DL)-based soft sensors on resource-limited IoT devices has demonstrated promise in terms of reliability and energy efficiency. However, its application in the field of wastewater flow estimation remains underexplored due to: (1) a lack of available datasets, (2) inconvenient toolchains for on-device AI model development and deployment, and (3) hardware platforms designed for general DL purposes rather than being optimized for energy-efficient soft sensor applications. This study addresses these gaps by proposing an automated, end-to-end solution for wastewater flow estimation using a prototype IoT device.


Idle is the New Sleep: Configuration-Aware Alternative to Powering Off FPGA-Based DL Accelerators During Inactivity

arXiv.org Artificial Intelligence

In the rapidly evolving Internet of Things (IoT) domain, we concentrate on enhancing energy efficiency in Deep Learning accelerators on FPGA-based heterogeneous platforms, aligning with the principles of sustainable computing. Instead of focusing on the inference phase, we introduce innovative optimizations to minimize the overhead of the FPGA configuration phase. By fine-tuning configuration parameters correctly, we achieved a 40.13-fold reduction in configuration energy. Moreover, augmented with power-saving methods, our Idle-Waiting strategy outperformed the traditional On-Off strategy in duty-cycle mode for request periods up to 499.06 ms. Specifically, at a 40 ms request period within a 4147 J energy budget, this strategy extends the system lifetime to approximately 12.39x that of the On-Off strategy. Empirically validated through hardware measurements and simulations, these optimizations provide valuable insights and practical methods for achieving energy-efficient and sustainable deployments in IoT.


FlowPrecision: Advancing FPGA-Based Real-Time Fluid Flow Estimation with Linear Quantization

arXiv.org Artificial Intelligence

In industrial and environmental monitoring, achieving real-time and precise fluid flow measurement remains a critical challenge. This study applies linear quantization in FPGA-based soft sensors for fluid flow estimation, significantly enhancing Neural Network model precision by overcoming the limitations of traditional fixed-point quantization. Our approach achieves up to a 10.10% reduction in Mean Squared Error and a notable 9.39% improvement in inference speed through targeted hardware optimizations. Validated across multiple data sets, our findings demonstrate that the optimized FPGA-based quantized models can provide efficient, accurate real-time inference, offering a viable alternative to cloud-based processing in pervasive autonomous systems.


MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

arXiv.org Artificial Intelligence

Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback


On-Device Soft Sensors: Real-Time Fluid Flow Estimation from Level Sensor Data

arXiv.org Artificial Intelligence

Soft sensors are crucial in bridging autonomous systems' physical and digital realms, enhancing sensor fusion and perception. Instead of deploying soft sensors on the Cloud, this study shift towards employing on-device soft sensors, promising heightened efficiency and bolstering data security. Our approach substantially improves energy efficiency by deploying Artificial Intelligence (AI) directly on devices within a wireless sensor network. Furthermore, the synergistic integration of the Microcontroller Unit and Field-Programmable Gate Array (FPGA) leverages the rapid AI inference capabilities of the latter. Empirical evidence from our real-world use case demonstrates that FPGA-based soft sensors achieve inference times ranging remarkably from 1.04 to 12.04 microseconds. These compelling results highlight the considerable potential of our innovative approach for executing real-time inference tasks efficiently, thereby presenting a feasible alternative that effectively addresses the latency challenges intrinsic to Cloud-based deployments.


Enhancing Energy-efficiency by Solving the Throughput Bottleneck of LSTM Cells for Embedded FPGAs

arXiv.org Artificial Intelligence

To process sensor data in the Internet of Things(IoTs), embedded deep learning for 1-dimensional data is an important technique. In the past, CNNs were frequently used because they are simple to optimise for special embedded hardware such as FPGAs. This work proposes a novel LSTM cell optimisation aimed at energy-efficient inference on end devices. Using the traffic speed prediction as a case study, a vanilla LSTM model with the optimised LSTM cell achieves 17534 inferences per second while consuming only 3.8 $\mu$J per inference on the FPGA XC7S15 from Spartan-7 family. It achieves at least 5.4$\times$ faster throughput and 1.37$\times$ more energy efficient than existing approaches.