Sayin, Burcu
Do LLMs Provide Consistent Answers to Health-Related Questions across Languages?
Schlicht, Ipek Baris, Zhao, Zhixue, Sayin, Burcu, Flek, Lucie, Rosso, Paolo
Equitable access to reliable health information is vital for public health, but the quality of online health resources varies by language, raising concerns about inconsistencies in Large Language Models (LLMs) for healthcare. In this study, we examine the consistency of responses provided by LLMs to health-related questions across English, German, Turkish, and Chinese. We largely expand the HealthFC dataset by categorizing health-related questions by disease type and broadening its multilingual scope with Turkish and Chinese translations. We reveal significant inconsistencies in responses that could spread healthcare misinformation. Our main contributions are 1) a multilingual health-related inquiry dataset with meta-information on disease categories, and 2) a novel prompt-based evaluation workflow that enables sub-dimensional comparisons between two languages through parsing. Our findings highlight key challenges in deploying LLM-based tools in multilingual contexts and emphasize the need for improved cross-lingual alignment to ensure accurate and equitable healthcare information.
Can LLMs Correct Physicians, Yet? Investigating Effective Interaction Methods in the Medical Domain
Sayin, Burcu, Minervini, Pasquale, Staiano, Jacopo, Passerini, Andrea
We explore the potential of Large Language Models (LLMs) to assist and potentially correct physicians in medical decision-making tasks. We evaluate several LLMs, including Meditron, Llama2, and Mistral, to analyze the ability of these models to interact effectively with physicians across different scenarios. We consider questions from PubMedQA and several tasks, ranging from binary (yes/no) responses to long answer generation, where the answer of the model is produced after an interaction with a physician. Our findings suggest that prompt design significantly influences the downstream accuracy of LLMs and that LLMs can provide valuable feedback to physicians, challenging incorrect diagnoses and contributing to more accurate decision-making. For example, when the physician is accurate 38% of the time, Mistral can produce the correct answer, improving accuracy up to 74% depending on the prompt being used, while Llama2 and Meditron models exhibit greater sensitivity to prompt choice. Our analysis also uncovers the challenges of ensuring that LLM-generated suggestions are pertinent and useful, emphasizing the need for further research in this area.
Learning To Guide Human Decision Makers With Vision-Language Models
Banerjee, Debodeep, Teso, Stefano, Sayin, Burcu, Passerini, Andrea
There is increasing interest in developing AIs for assisting human decision-making in high-stakes tasks, such as medical diagnosis, for the purpose of improving decision quality and reducing cognitive strain. Mainstream approaches team up an expert with a machine learning model to which safer decisions are offloaded, thus letting the former focus on cases that demand their attention. his separation of responsibilities setup, however, is inadequate for high-stakes scenarios. On the one hand, the expert may end up over-relying on the machine's decisions due to anchoring bias, thus losing the human oversight that is increasingly being required by regulatory agencies to ensure trustworthy AI. On the other hand, the expert is left entirely unassisted on the (typically hardest) decisions on which the model abstained. As a remedy, we introduce learning to guide (LTG), an alternative framework in which - rather than taking control from the human expert - the machine provides guidance useful for decision making, and the human is entirely responsible for coming up with a decision. In order to ensure guidance is interpretable} and task-specific, we develop SLOG, an approach for turning any vision-language model into a capable generator of textual guidance by leveraging a modicum of human feedback. Our empirical evaluation highlights the promise of \method on a challenging, real-world medical diagnosis task.