Goto

Collaborating Authors

 Satheesh, Anirudh


Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities

arXiv.org Artificial Intelligence

Evaluations of large language model (LLM) risks and capabilities are increasingly being incorporated into AI risk management and governance frameworks. Currently, most risk evaluations are conducted by designing inputs that elicit harmful behaviors from the system. However, a fundamental limitation of this approach is that the harmfulness of the behaviors identified during any particular evaluation can only lower bound the model's worst-possible-case behavior. As a complementary method for eliciting harmful behaviors, we propose evaluating LLMs with model tampering attacks which allow for modifications to latent activations or weights. We pit state-of-the-art techniques for removing harmful LLM capabilities against a suite of 5 input-space and 6 model tampering attacks. In addition to benchmarking these methods against each other, we show that (1) model resilience to capability elicitation attacks lies on a low-dimensional robustness subspace; (2) the attack success rate of model tampering attacks can empirically predict and offer conservative estimates for the success of held-out input-space attacks; and (3) state-of-the-art unlearning methods can easily be undone within 16 steps of fine-tuning. Together these results highlight the difficulty of removing harmful LLM capabilities and show that model tampering attacks enable substantially more rigorous evaluations than input-space attacks alone. We release models at https://huggingface.co/LLM-GAT


EnsemW2S: Can an Ensemble of LLMs be Leveraged to Obtain a Stronger LLM?

arXiv.org Artificial Intelligence

How can we harness the collective capabilities of multiple Large Language Models (LLMs) to create an even more powerful model? This question forms the foundation of our research, where we propose an innovative approach to weak-to-strong (w2s) generalization-a critical problem in AI alignment. Our work introduces an easy-to-hard (e2h) framework for studying the feasibility of w2s generalization, where weak models trained on simpler tasks collaboratively supervise stronger models on more complex tasks. This setup mirrors real-world challenges, where direct human supervision is limited. To achieve this, we develop a novel AdaBoost-inspired ensemble method, demonstrating that an ensemble of weak supervisors can enhance the performance of stronger LLMs across classification and generative tasks on difficult QA datasets. In several cases, our ensemble approach matches the performance of models trained on ground-truth data, establishing a new benchmark for w2s generalization. We observe an improvement of up to 14% over existing baselines and average improvements of 5% and 4% for binary classification and generative tasks, respectively. This research points to a promising direction for enhancing AI through collective supervision, especially in scenarios where labeled data is sparse or insufficient.


SAFLEX: Self-Adaptive Augmentation via Feature Label Extrapolation

arXiv.org Artificial Intelligence

Data augmentation, a cornerstone technique in deep learning, is crucial in enhancing model performance, especially with scarce labeled data. While traditional techniques are effective, their reliance on hand-crafted methods limits their applicability across diverse data types and tasks. Although modern learnable augmentation methods offer increased adaptability, they are computationally expensive and challenging to incorporate within prevalent augmentation workflows. In this work, we present a novel, efficient method for data augmentation, effectively bridging the gap between existing augmentation strategies and emerging datasets and learning tasks. We introduce SAFLEX (Self-Adaptive Augmentation via Feature Label EXtrapolation), which learns the sample weights and soft labels of augmented samples provided by any given upstream augmentation pipeline, using a specifically designed efficient bilevel optimization algorithm. Remarkably, SAFLEX effectively reduces the noise and label errors of the upstream augmentation pipeline with a marginal computational cost. As a versatile module, SAFLEX excels across diverse datasets, including natural and medical images and tabular data, showcasing its prowess in few-shot learning and out-of-distribution generalization. SAFLEX seamlessly integrates with common augmentation strategies like RandAug, CutMix, and those from large pre-trained generative models like stable diffusion and is also compatible with frameworks such as CLIP's fine-tuning. Our findings highlight the potential to adapt existing augmentation pipelines for new data types and tasks, signaling a move towards more adaptable and resilient training frameworks.