Goto

Collaborating Authors

 Sarrafzadeh, Majid


Exploring a Datasets Statistical Effect Size Impact on Model Performance, and Data Sample-Size Sufficiency

arXiv.org Artificial Intelligence

Having a sufficient quantity of quality data is a critical enabler of training effective machine learning models. Being able to effectively determine the adequacy of a dataset prior to training and evaluating a model's performance would be an essential tool for anyone engaged in experimental design or data collection. However, despite the need for it, the ability to prospectively assess data sufficiency remains an elusive capability. We report here on two experiments undertaken in an attempt to better ascertain whether or not basic descriptive statistical measures can be indicative of how effective a dataset will be at training a resulting model. Leveraging the effect size of our features, this work first explores whether or not a correlation exists between effect size, and resulting model performance (theorizing that the magnitude of the distinction between classes could correlate to a classifier's resulting success). We then explore whether or not the magnitude of the effect size will impact the rate of convergence of our learning rate, (theorizing again that a greater effect size may indicate that the model will converge more rapidly, and with a smaller sample size needed). Our results appear to indicate that this is not an effective heuristic for determining adequate sample size or projecting model performance, and therefore that additional work is still needed to better prospectively assess adequacy of data.


Leveraging Large Language Models and Topic Modeling for Toxicity Classification

arXiv.org Artificial Intelligence

Content moderation and toxicity classification represent critical tasks with significant social implications. However, studies have shown that major classification models exhibit tendencies to magnify or reduce biases and potentially overlook or disadvantage certain marginalized groups within their classification processes. Researchers suggest that the positionality of annotators influences the gold standard labels in which the models learned from propagate annotators' bias. To further investigate the impact of annotator positionality, we delve into fine-tuning BERTweet and HateBERT on the dataset while using topic-modeling strategies for content moderation. The results indicate that fine-tuning the models on specific topics results in a notable improvement in the F1 score of the models when compared to the predictions generated by other prominent classification models such as GPT-4, PerspectiveAPI, and RewireAPI. These findings further reveal that the state-of-the-art large language models exhibit significant limitations in accurately detecting and interpreting text toxicity contrasted with earlier methodologies. Code is available at https://github.com/aheldis/Toxicity-Classification.git.


ChatGPT for Us: Preserving Data Privacy in ChatGPT via Dialogue Text Ambiguation to Expand Mental Health Care Delivery

arXiv.org Artificial Intelligence

Abstract-- Large language models have been useful in expanding mental health care delivery. ChatGPT, in particular, has gained popularity for its ability to generate human-like dialogue. To enable its utilization, we propose a text ambiguation framework that preserves user privacy. We ground this in the task of addressing stress prompted by user-provided texts to demonstrate the viability and helpfulness of privacy-preserved generations and find that recommendations are able to be moderately helpful and relevant, even if original user text is not used. We measured cosine similarity after calculating TF-IDF on Language technologies have proven useful in improving P versus NP responses and found an average score of 0.25, mental health outcomes according to scholarly literature [1], indicating some similarity between responses.


A Self-supervised Framework for Improved Data-Driven Monitoring of Stress via Multi-modal Passive Sensing

arXiv.org Artificial Intelligence

Recent advances in remote health monitoring systems have significantly benefited patients and played a crucial role in improving their quality of life. However, while physiological health-focused solutions have demonstrated increasing success and maturity, mental health-focused applications have seen comparatively limited success in spite of the fact that stress and anxiety disorders are among the most common issues people deal with in their daily lives. In the hopes of furthering progress in this domain through the development of a more robust analytic framework for the measurement of indicators of mental health, we propose a multi-modal semi-supervised framework for tracking physiological precursors of the stress response. Our methodology enables utilizing multi-modal data of differing domains and resolutions from wearable devices and leveraging them to map short-term episodes to semantically efficient embeddings for a given task. Additionally, we leverage an inter-modality contrastive objective, with the advantages of rendering our framework both modular and scalable. The focus on optimizing both local and global aspects of our embeddings via a hierarchical structure renders transferring knowledge and compatibility with other devices easier to achieve. In our pipeline, a task-specific pooling based on an attention mechanism, which estimates the contribution of each modality on an instance level, computes the final embeddings for observations. This additionally provides a thorough diagnostic insight into the data characteristics and highlights the importance of signals in the broader view of predicting episodes annotated per mental health status. We perform training experiments using a corpus of real-world data on perceived stress, and our results demonstrate the efficacy of the proposed approach in performance improvements.


Auditing Algorithmic Fairness in Machine Learning for Health with Severity-Based LOGAN

arXiv.org Artificial Intelligence

Auditing machine learning-based (ML) healthcare tools for bias is critical to preventing patient harm, especially in communities that disproportionately face health inequities. General frameworks are becoming increasingly available to measure ML fairness gaps between groups. However, ML for health (ML4H) auditing principles call for a contextual, patient-centered approach to model assessment. Therefore, ML auditing tools must be (1) better aligned with ML4H auditing principles and (2) able to illuminate and characterize communities vulnerable to the most harm. To address this gap, we propose supplementing ML4H auditing frameworks with SLOGAN (patient Severity-based LOcal Group biAs detectioN), an automatic tool for capturing local biases in a clinical prediction task. SLOGAN adapts an existing tool, LOGAN (LOcal Group biAs detectioN), by contextualizing group bias detection in patient illness severity and past medical history. We investigate and compare SLOGAN's bias detection capabilities to LOGAN and other clustering techniques across patient subgroups in the MIMIC-III dataset. On average, SLOGAN identifies larger fairness disparities in over 75% of patient groups than LOGAN while maintaining clustering quality. Furthermore, in a diabetes case study, health disparity literature corroborates the characterizations of the most biased clusters identified by SLOGAN. Our results contribute to the broader discussion of how machine learning biases may perpetuate existing healthcare disparities.


Transfer Learning for Activity Recognition in Mobile Health

arXiv.org Machine Learning

While activity recognition from inertial sensors holds potential for mobile health, differences in sensing platforms and user movement patterns cause performance degradation. Aiming to address these challenges, we propose a transfer learning framework, TransFall, for sensor-based activity recognition. TransFall's design contains a two-tier data transformation, a label estimation layer, and a model generation layer to recognize activities for the new scenario. We validate TransFall analytically and empirically.


Unsupervised Representation for EHR Signals and Codes as Patient Status Vector

arXiv.org Artificial Intelligence

Effective modeling of electronic health records presents many challenges as they contain large amounts of irregularity most of which are due to the varying procedures and diagnosis a patient may have. Despite the recent progress in machine learning, unsupervised learning remains largely at open, especially in the healthcare domain. In this work, we present a two-step unsupervised representation learning scheme to summarize the multi-modal clinical time series consisting of signals and medical codes into a patient status vector. First, an auto-encoder step is used to reduce sparse medical codes and clinical time series into a distributed representation. Subsequently, the concatenation of the distributed representations is further fine-tuned using a forecasting task. We evaluate the usefulness of the representation on two downstream tasks: mortality and readmission. Our proposed method shows improved generalization performance for both short duration ICU visits and long duration ICU visits.


Target-Focused Feature Selection Using a Bayesian Approach

arXiv.org Machine Learning

In many real-world scenarios where data is high dimensional, test time acquisition of features is a non-trivial task due to costs associated with feature acquisition and evaluating feature value. The need for highly confident models with an extremely frugal acquisition of features can be addressed by allowing a feature selection method to become target aware. We introduce an approach to feature selection that is based on Bayesian learning, allowing us to report target-specific levels of uncertainty, false positive, and false negative rates. In addition, measuring uncertainty lifts the restriction on feature selection being target agnostic, allowing for feature acquisition based on a single target of focus out of many. We show that acquiring features for a specific target is at least as good as common linear feature selection approaches for small non-sparse datasets, and surpasses these when faced with real-world healthcare data that is larger in scale and in sparseness.


TAPER: Time-Aware Patient EHR Representation

arXiv.org Machine Learning

--Effective representation learning of electronic health records is a challenging task and is becoming more important as the availability of such data is becoming pervasive. The data contained in these records are irregular and contain multiple modalities such as notes, and medical codes. They are preempted by medical conditions the patient may have, and are typically recorded by medical staff. Accompanying codes are notes containing valuable information about patients beyond the structured information contained in electronic health records. We use transformer networks and the recently proposed BERT language model to embed these data streams into a unified vector representation. The presented approach effectively encodes a patient's visit data into a single distributed representation, which can be used for downstream tasks. Our model demonstrates superior performance and generalization on mortality, readmission and length of stay tasks using the publicly available MIMIC-III ICU dataset. LECTRONIC health records (EHR) are commonly adopted in hospitals to improve patient care. In an intensive care unit (ICU), various data sources are collected on a daily basis as preempted by medical staff as the patient undergoes care in the unit. The collected data consists of data from different modalities: medical codes such as diagnosis which are standardized by well-organized ontology's like the International Classification of Disease (ICD) Additionally, lab tests and bedside monitoring devices are used to collect signals each of which are collected at varying frequencies for a quantitative measure of the patient care.


Generative Imputation and Stochastic Prediction

arXiv.org Machine Learning

In many machine learning applications, we are faced with incomplete datasets. In the literature, missing data imputation techniques have been mostly concerned with filling missing values. However, the existence of missing values is synonymous with uncertainties not only over the distribution of missing values but also over target class assignments that require careful consideration. The objectives of this paper are twofold. First, we proposed a method for generating imputations from the conditional distribution of missing values given observed values. Second, we use the generated samples to estimate the distribution of target assignments given incomplete data. In order to generate imputations, we train a simple and effective generator network to generate imputations that a discriminator network is tasked to distinguish. Following this, a predictor network is trained using imputed samples from the generator network to capture the classification uncertainties and make predictions accordingly. The proposed method is evaluated on CIFAR-10 image dataset as well as two real-world tabular classification datasets, under various missingness rates and structures. Our experimental results show the effectiveness of the proposed method in generating imputations, as well as providing estimates for the class uncertainties in a classification task when faced with missing values.