Not enough data to create a plot.
Try a different view from the menu above.
Sarkar, Anindya
An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model
Sarkar, Anindya, Vadivu, G.
This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures: The particular areas of interest for the research include but are not limited to: Variational Autoencoder (VAE), Transformer, and Long Short-Term Memory (LSTM) networks. The presented framework is aimed to substantially utilize the advantages of each model which would allow for achieving the identification of both linear and non-linear relations in stock price movements. To improve the accuracy of its predictions it uses rich set of technical indicators and it scales its predictors based on the current market situation. By trying out the framework on several stock data sets, and benchmarking the results against single models and conventional forecasting, the ensemble method exhibits consistently high accuracy and reliability. The VAE is able to learn linear representation on high-dimensional data while the Transformer outstandingly perform in recognizing long-term patterns on the stock price data. LSTM, based on its characteristics of being a model that can deal with sequences, brings additional improvements to the given framework, especially regarding temporal dynamics and fluctuations. Combined, these components provide exceptional directional performance and a very small disparity in the predicted results. The present solution has given a probable concept that can handle the inherent problem of stock price prediction with high reliability and scalability. Compared to the performance of individual proposals based on the neural network, as well as classical methods, the proposed ensemble framework demonstrates the advantages of combining different architectures. It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars.
Learning Policy Committees for Effective Personalization in MDPs with Diverse Tasks
Ge, Luise, Lanier, Michael, Sarkar, Anindya, Guresti, Bengisu, Vorobeychik, Yevgeniy, Zhang, Chongjie
Many dynamic decision problems, such as robotic control, involve a series of tasks, many of which are unknown at training time. Typical approaches for these problems, such as multi-task and meta reinforcement learning, do not generalize well when the tasks are diverse. On the other hand, approaches that aim to tackle task diversity, such as using task embedding as policy context and task clustering, typically lack performance guarantees and require a large number of training tasks. To address these challenges, we propose a novel approach for learning a policy committee that includes at least one near-optimal policy with high probability for tasks encountered during execution. While we show that this problem is in general inapproximable, we present two practical algorithmic solutions. The first yields provable approximation and task sample complexity guarantees when tasks are low-dimensional (the best we can do due to inapproximability), whereas the second is a general and practical gradient-based approach. In addition, we provide a provable sample complexity bound for few-shot learning. Our experiments on MuJoCo and Meta-World show that the proposed approach outperforms state-of-the-art multi-task, meta-, and task clustering baselines in training, generalization, and few-shot learning, often by a large margin.
Active Geospatial Search for Efficient Tenant Eviction Outreach
Sarkar, Anindya, DiChristofano, Alex, Das, Sanmay, Fowler, Patrick J., Jacobs, Nathan, Vorobeychik, Yevgeniy
Tenant evictions threaten housing stability and are a major concern for many cities. An open question concerns whether data-driven methods enhance outreach programs that target at-risk tenants to mitigate their risk of eviction. We propose a novel active geospatial search (AGS) modeling framework for this problem. AGS integrates property-level information in a search policy that identifies a sequence of rental units to canvas to both determine their eviction risk and provide support if needed. We propose a hierarchical reinforcement learning approach to learn a search policy for AGS that scales to large urban areas containing thousands of parcels, balancing exploration and exploitation and accounting for travel costs and a budget constraint. Crucially, the search policy adapts online to newly discovered information about evictions. Evaluation using eviction data for a large urban area demonstrates that the proposed framework and algorithmic approach are considerably more effective at sequentially identifying eviction cases than baseline methods.
GOMAA-Geo: GOal Modality Agnostic Active Geo-localization
Sarkar, Anindya, Sastry, Srikumar, Pirinen, Aleksis, Zhang, Chongjie, Jacobs, Nathan, Vorobeychik, Yevgeniy
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities. This could emulate a UAV involved in a search-and-rescue operation navigating through an area, observing a stream of aerial images as it goes. The AGL task is associated with two important challenges. Firstly, an agent must deal with a goal specification in one of multiple modalities (e.g., through a natural language description) while the search cues are provided in other modalities (aerial imagery). The second challenge is limited localization time (e.g., limited battery life, urgency) so that the goal must be localized as efficiently as possible, i.e. the agent must effectively leverage its sequentially observed aerial views when searching for the goal. To address these challenges, we propose GOMAA-Geo - a goal modality agnostic active geo-localization agent - for zeroshot generalization between different goal modalities. Our approach combines cross-modality contrastive learning to align representations across modalities with supervised foundation model pretraining and reinforcement learning to obtain highly effective navigation and localization policies. Through extensive evaluations, we show that GOMAA-Geo outperforms alternative learnable approaches and that it generalizes across datasets - e.g., to disaster-hit areas without seeing a single disaster scenario during training - and goal modalities - e.g., to ground-level imagery or textual descriptions, despite only being trained with goals specified as aerial views. Code and models will be made publicly available at this link.
Amortized nonmyopic active search via deep imitation learning
Nguyen, Quan, Sarkar, Anindya, Garnett, Roman
Active search formalizes a specialized active learning setting where the goal is to collect members of a rare, valuable class. The state-of-the-art algorithm approximates the optimal Bayesian policy in a budget-aware manner, and has been shown to achieve impressive empirical performance in previous work. However, even this approximate policy has a superlinear computational complexity with respect to the size of the search problem, rendering its application impractical in large spaces or in real-time systems where decisions must be made quickly. We study the amortization of this policy by training a neural network to learn to search. To circumvent the difficulty of learning from scratch, we appeal to imitation learning techniques to mimic the behavior of the expert, expensive-to-compute policy. Our policy network, trained on synthetic data, learns a beneficial search strategy that yields nonmyopic decisions carefully balancing exploration and exploitation. Extensive experiments demonstrate our policy achieves competitive performance at real-world tasks that closely approximates the expert's at a fraction of the cost, while outperforming cheaper baselines.
Attacks on Node Attributes in Graph Neural Networks
Xu, Ying, Lanier, Michael, Sarkar, Anindya, Vorobeychik, Yevgeniy
Graphs are commonly used to model complex networks prevalent in modern social media and literacy applications. Our research investigates the vulnerability of these graphs through the application of feature based adversarial attacks, focusing on both decision time attacks and poisoning attacks. In contrast to state of the art models like Net Attack and Meta Attack, which target node attributes and graph structure, our study specifically targets node attributes. For our analysis, we utilized the text dataset Hellaswag and graph datasets Cora and CiteSeer, providing a diverse basis for evaluation. Our findings indicate that decision time attacks using Projected Gradient Descent (PGD) are more potent compared to poisoning attacks that employ Mean Node Embeddings and Graph Contrastive Learning strategies. This provides insights for graph data security, pinpointing where graph-based models are most vulnerable and thereby informing the development of stronger defense mechanisms against such attacks.
A Partially Supervised Reinforcement Learning Framework for Visual Active Search
Sarkar, Anindya, Jacobs, Nathan, Vorobeychik, Yevgeniy
Visual active search (VAS) has been proposed as a modeling framework in which visual cues are used to guide exploration, with the goal of identifying regions of interest in a large geospatial area. Its potential applications include identifying hot spots of rare wildlife poaching activity, search-and-rescue scenarios, identifying illegal trafficking of weapons, drugs, or people, and many others. State of the art approaches to VAS include applications of deep reinforcement learning (DRL), which yield end-to-end search policies, and traditional active search, which combines predictions with custom algorithmic approaches. While the DRL framework has been shown to greatly outperform traditional active search in such domains, its end-to-end nature does not make full use of supervised information attained either during training, or during actual search, a significant limitation if search tasks differ significantly from those in the training distribution. We propose an approach that combines the strength of both DRL and conventional active search by decomposing the search policy into a prediction module, which produces a geospatial distribution of regions of interest based on task embedding and search history, and a search module, which takes the predictions and search history as input and outputs the search distribution. We develop a novel meta-learning approach for jointly learning the resulting combined policy that can make effective use of supervised information obtained both at training and decision time. Our extensive experiments demonstrate that the proposed representation and meta-learning frameworks significantly outperform state of the art in visual active search on several problem domains.
A Visual Active Search Framework for Geospatial Exploration
Sarkar, Anindya, Lanier, Michael, Alfeld, Scott, Feng, Jiarui, Garnett, Roman, Jacobs, Nathan, Vorobeychik, Yevgeniy
Many problems can be viewed as forms of geospatial search aided by aerial imagery, with examples ranging from detecting poaching activity to human trafficking. We model this class of problems in a visual active search (VAS) framework, which has three key inputs: (1) an image of the entire search area, which is subdivided into regions, (2) a local search function, which determines whether a previously unseen object class is present in a given region, and (3) a fixed search budget, which limits the number of times the local search function can be evaluated. The goal is to maximize the number of objects found within the search budget. We propose a reinforcement learning approach for VAS that learns a meta-search policy from a collection of fully annotated search tasks. This meta-search policy is then used to dynamically search for a novel target-object class, leveraging the outcome of any previous queries to determine where to query next. Through extensive experiments on several large-scale satellite imagery datasets, we show that the proposed approach significantly outperforms several strong baselines. We also propose novel domain adaptation techniques that improve the policy at decision time when there is a significant domain gap with the training data. Code is publicly available.
How Powerful are K-hop Message Passing Graph Neural Networks
Feng, Jiarui, Chen, Yixin, Li, Fuhai, Sarkar, Anindya, Zhang, Muhan
The most popular design paradigm for Graph Neural Networks (GNNs) is 1-hop message passing -- aggregating information from 1-hop neighbors repeatedly. However, the expressive power of 1-hop message passing is bounded by the Weisfeiler-Lehman (1-WL) test. Recently, researchers extended 1-hop message passing to K-hop message passing by aggregating information from K-hop neighbors of nodes simultaneously. However, there is no work on analyzing the expressive power of K-hop message passing. In this work, we theoretically characterize the expressive power of K-hop message passing. Specifically, we first formally differentiate two different kernels of K-hop message passing which are often misused in previous works. We then characterize the expressive power of K-hop message passing by showing that it is more powerful than 1-WL and can distinguish almost all regular graphs. Despite the higher expressive power, we show that K-hop message passing still cannot distinguish some simple regular graphs and its expressive power is bounded by 3-WL. To further enhance its expressive power, we introduce a KP-GNN framework, which improves K-hop message passing by leveraging the peripheral subgraph information in each hop. We show that KP-GNN can distinguish many distance regular graphs which could not be distinguished by previous distance encoding or 3-WL methods. Experimental results verify the expressive power and effectiveness of KP-GNN. KP-GNN achieves competitive results across all benchmark datasets.
Enhanced Regularizers for Attributional Robustness
Sarkar, Anindya, Sarkar, Anirban, Balasubramanian, Vineeth N
Deep neural networks are the default choice of learning models for computer vision tasks. Extensive work has been carried out in recent years on explaining deep models for vision tasks such as classification. However, recent work has shown that it is possible for these models to produce substantially different attribution maps even when two very similar images are given to the network, raising serious questions about trustworthiness. To address this issue, we propose a robust attribution training strategy to improve attributional robustness of deep neural networks. Our method carefully analyzes the requirements for attributional robustness and introduces two new regularizers that preserve a model's attribution map during attacks. Our method surpasses state-of-the-art attributional robustness methods by a margin of approximately 3% to 9% in terms of attribution robustness measures on several datasets including MNIST, FMNIST, Flower and GTSRB.