Sano, Akane
Fairness-Driven LLM-based Causal Discovery with Active Learning and Dynamic Scoring
Zanna, Khadija, Sano, Akane
Causal discovery (CD) plays a pivotal role in numerous scientific fields by clarifying the causal relationships that underlie phenomena observed in diverse disciplines. Despite significant advancements in CD algorithms that enhance bias and fairness analyses in machine learning, their application faces challenges due to the high computational demands and complexities of large-scale data. This paper introduces a framework that leverages Large Language Models (LLMs) for CD, utilizing a metadata-based approach akin to the reasoning processes of human experts. By shifting from pairwise queries to a more scalable breadth-first search (BFS) strategy, the number of required queries is reduced from quadratic to linear in terms of variable count, thereby addressing scalability concerns inherent in previous approaches. This method utilizes an Active Learning (AL) and a Dynamic Scoring Mechanism that prioritizes queries based on their potential information gain, combining mutual information, partial correlation, and LLM confidence scores to refine the causal graph more efficiently and accurately. This BFS query strategy reduces the required number of queries significantly, thereby addressing scalability concerns inherent in previous approaches. This study provides a more scalable and efficient solution for leveraging LLMs in fairness-driven CD, highlighting the effects of the different parameters on performance. We perform fairness analyses on the inferred causal graphs, identifying direct and indirect effects of sensitive attributes on outcomes. A comparison of these analyses against those from graphs produced by baseline methods highlights the importance of accurate causal graph construction in understanding bias and ensuring fairness in machine learning systems.
ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text
Yu, Han, Guo, Peikun, Sano, Akane
The utilization of deep learning on electrocardiogram (ECG) analysis has brought the advanced accuracy and efficiency of cardiac healthcare diagnostics. By leveraging the capabilities of deep learning in semantic understanding, especially in feature extraction and representation learning, this study introduces a new multimodal contrastive pretaining framework that aims to improve the quality and robustness of learned representations of 12-lead ECG signals. Our framework comprises two key components, including Cardio Query Assistant (CQA) and ECG Semantics Integrator(ESI). CQA integrates a retrieval-augmented generation (RAG) pipeline to leverage large language models (LLMs) and external medical knowledge to generate detailed textual descriptions of ECGs. The generated text is enriched with information about demographics and waveform patterns. ESI integrates both contrastive and captioning loss to pretrain ECG encoders for enhanced representations. We validate our approach through various downstream tasks, including arrhythmia detection and ECG-based subject identification. Our experimental results demonstrate substantial improvements over strong baselines in these tasks. These baselines encompass supervised and self-supervised learning methods, as well as prior multimodal pretraining approaches.
AdaWaveNet: Adaptive Wavelet Network for Time Series Analysis
Yu, Han, Guo, Peikun, Sano, Akane
Time series data analysis is a critical component in various domains such as finance, healthcare, and meteorology. Despite the progress in deep learning for time series analysis, there remains a challenge in addressing the non-stationary nature of time series data. Traditional models, which are built on the assumption of constant statistical properties over time, often struggle to capture the temporal dynamics in realistic time series, resulting in bias and error in time series analysis. This paper introduces the Adaptive Wavelet Network (AdaWaveNet), a novel approach that employs Adaptive Wavelet Transformation for multi-scale analysis of non-stationary time series data. AdaWaveNet designed a lifting scheme-based wavelet decomposition and construction mechanism for adaptive and learnable wavelet transforms, which offers enhanced flexibility and robustness in analysis. We conduct extensive experiments on 10 datasets across 3 different tasks, including forecasting, imputation, and a newly established super-resolution task. The evaluations demonstrate the effectiveness of AdaWaveNet over existing methods in all three tasks, which illustrates its potential in various real-world applications.
Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
Zanna, Khadija, Sano, Akane
The term bias was first introduced in the machine learning domain by Tom Mitchell in his 1980 paper titled "The need for biases in learning generalizations" Mitchell [1980]. The concept of bias refers to giving importance to particular features to improve generalization. This general idea of bias in machine learning is positive and necessary for models to perform, eliminating the risk of hyper-focusing on specific samples over others. On the contrary, bias can also be negative in machine learning. Negative bias can be defined as an inaccurate assumption made by a machine learning algorithm that is systematically or historically prejudiced against certain groups of people Zanna et al. [2022]. Decisions made by these biased algorithms could cause adverse effects on particular social groups, for example, those defined by sex, race, age, marital status, handicaps, etc., when used to make autonomous decisions in life-changing cases such as health, hiring, education, criminal sentencing, etc. Negative bias can be introduced into the machine pipeline in two main ways, through the data or the algorithm itself Blanzeisky and Cunningham [2021]. Bias due to data, also known as a negative legacy Cunningham and Delany [2021], Kamishima et al. [2012], can be caused by an imbalance in the representation of different population categories
Balanced Mixed-Type Tabular Data Synthesis with Diffusion Models
Yang, Zeyu, Guo, Peikun, Zanna, Khadija, Sano, Akane
Diffusion models have emerged as a robust framework for various generative tasks, such as image and audio synthesis, and have also demonstrated a remarkable ability to generate mixed-type tabular data comprising both continuous and discrete variables. However, current approaches to training diffusion models on mixed-type tabular data tend to inherit the imbalanced distributions of features present in the training dataset, which can result in biased sampling. In this research, we introduce a fair diffusion model designed to generate balanced data on sensitive attributes. We present empirical evidence demonstrating that our method effectively mitigates the class imbalance in training data while maintaining the quality of the generated samples. Furthermore, we provide evidence that our approach outperforms existing methods for synthesizing tabular data in terms of performance and fairness.
SleepNet: Attention-Enhanced Robust Sleep Prediction using Dynamic Social Networks
Khalid, Maryam, Klerman, Elizabeth B., Mchill, Andrew W., Phillips, Andrew J. K., Sano, Akane
Sleep behavior significantly impacts health and acts as an indicator of physical and mental well-being. Monitoring and predicting sleep behavior with ubiquitous sensors may therefore assist in both sleep management and tracking of related health conditions. While sleep behavior depends on, and is reflected in the physiology of a person, it is also impacted by external factors such as digital media usage, social network contagion, and the surrounding weather. In this work, we propose SleepNet, a system that exploits social contagion in sleep behavior through graph networks and integrates it with physiological and phone data extracted from ubiquitous mobile and wearable devices for predicting next-day sleep labels about sleep duration. Our architecture overcomes the limitations of large-scale graphs containing connections irrelevant to sleep behavior by devising an attention mechanism. The extensive experimental evaluation highlights the improvement provided by incorporating social networks in the model. Additionally, we conduct robustness analysis to demonstrate the system's performance in real-life conditions. The outcomes affirm the stability of SleepNet against perturbations in input data. Further analyses emphasize the significance of network topology in prediction performance revealing that users with higher eigenvalue centrality are more vulnerable to data perturbations.
ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method for ECG signal
Yu, Han, Yang, Huiyuan, Sano, Akane
Electrocardiogram (ECG) is an essential signal in monitoring human heart activities. Researchers have achieved promising results in leveraging ECGs in clinical applications with deep learning models. However, the mainstream deep learning approaches usually neglect the periodic and formative attribute of the ECG heartbeat waveform. In this work, we propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals. More specifically, ECG signals are first split into heartbeat segments, and then structural features are extracted from each of the segments. Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks. Further, due to the fact that massive ECG signals are available but the labeled data are very limited, we also explore self-supervised learning strategy to pre-train the models, resulting significant improvement for downstream tasks. The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications: cardiac condition diagnosis, sleep apnea detection, and arrhythmia classification. Further, we find that the ECG-SL tends to focus more on each heartbeat's peak and ST range than ResNet by visualizing the saliency maps.
Empirical Study of Mix-based Data Augmentation Methods in Physiological Time Series Data
Guo, Peikun, Yang, Huiyuan, Sano, Akane
Data augmentation is a common practice to help generalization in the procedure of deep model training. In the context of physiological time series classification, previous research has primarily focused on label-invariant data augmentation methods. However, another class of augmentation techniques (\textit{i.e., Mixup}) that emerged in the computer vision field has yet to be fully explored in the time series domain. In this study, we systematically review the mix-based augmentations, including mixup, cutmix, and manifold mixup, on six physiological datasets, evaluating their performance across different sensory data and classification tasks. Our results demonstrate that the three mix-based augmentations can consistently improve the performance on the six datasets. More importantly, the improvement does not rely on expert knowledge or extensive parameter tuning. Lastly, we provide an overview of the unique properties of the mix-based augmentation methods and highlight the potential benefits of using the mix-based augmentation in physiological time series data.
PiRL: Participant-Invariant Representation Learning for Healthcare
Cao, Zhaoyang, Yu, Han, Yang, Huiyuan, Sano, Akane
Due to individual heterogeneity, performance gaps are observed between generic (one-size-fits-all) models and person-specific models in data-driven health applications. However, in real-world applications, generic models are usually more favorable due to new-user-adaptation issues and system complexities, etc. To improve the performance of the generic model, we propose a representation learning framework that learns participant-invariant representations, named PiRL. The proposed framework utilizes maximum mean discrepancy (MMD) loss and domain-adversarial training to encourage the model to learn participant-invariant representations. Further, a triplet loss, which constrains the model for inter-class alignment of the representations, is utilized to optimize the learned representations for downstream health applications. We evaluated our frameworks on two public datasets related to physical and mental health, for detecting sleep apnea and stress, respectively. As preliminary results, we found the proposed approach shows around a 5% increase in accuracy compared to the baseline.
Exploiting Social Graph Networks for Emotion Prediction
Khalid, Maryam, Sano, Akane
Emotion prediction plays an essential role in mental health and emotion-aware computing. The complex nature of emotion resulting from its dependency on a person's physiological health, mental state, and his surroundings makes its prediction a challenging task. In this work, we utilize mobile sensing data to predict happiness and stress. In addition to a person's physiological features, we also incorporate the environment's impact through weather and social network. To this end, we leverage phone data to construct social networks and develop a machine learning architecture that aggregates information from multiple users of the graph network and integrates it with the temporal dynamics of data to predict emotion for all the users. The construction of social networks does not incur additional cost in terms of EMAs or data collection from users and doesn't raise privacy concerns. We propose an architecture that automates the integration of a user's social network affect prediction, is capable of dealing with the dynamic distribution of real-life social networks, making it scalable to large-scale networks. Our extensive evaluation highlights the improvement provided by the integration of social networks. We further investigate the impact of graph topology on model's performance.