Not enough data to create a plot.
Try a different view from the menu above.
Sakai, Yusuke
Rethinking Evaluation Metrics for Grammatical Error Correction: Why Use a Different Evaluation Process than Human?
Goto, Takumi, Sakai, Yusuke, Watanabe, Taro
One of the goals of automatic evaluation metrics in grammatical error correction (GEC) is to rank GEC systems such that it matches human preferences. However, current automatic evaluations are based on procedures that diverge from human evaluation. Specifically, human evaluation derives rankings by aggregating sentence-level relative evaluation results, e.g., pairwise comparisons, using a rating algorithm, whereas automatic evaluation averages sentence-level absolute scores to obtain corpus-level scores, which are then sorted to determine rankings. In this study, we propose an aggregation method for existing automatic evaluation metrics which aligns with human evaluation methods to bridge this gap. We conducted experiments using various metrics, including edit-based metrics, $n$-gram based metrics, and sentence-level metrics, and show that resolving the gap improves results for the most of metrics on the SEEDA benchmark. We also found that even BERT-based metrics sometimes outperform the metrics of GPT-4. We publish our unified implementation of the metrics and meta-evaluations.
Tonguescape: Exploring Language Models Understanding of Vowel Articulation
Sakajo, Haruki, Sakai, Yusuke, Kamigaito, Hidetaka, Watanabe, Taro
Vowels are primarily characterized by tongue position. Humans have discovered these features of vowel articulation through their own experience and explicit objective observation such as using MRI. With this knowledge and our experience, we can explain and understand the relationship between tongue positions and vowels, and this knowledge is helpful for language learners to learn pronunciation. Since language models (LMs) are trained on a large amount of data that includes linguistic and medical fields, our preliminary studies indicate that an LM is able to explain the pronunciation mechanisms of vowels. However, it is unclear whether multi-modal LMs, such as vision LMs, align textual information with visual information. One question arises: do LMs associate real tongue positions with vowel articulation? In this study, we created video and image datasets from the existing real-time MRI dataset and investigated whether LMs can understand vowel articulation based on tongue positions using vision-based information. Our findings suggest that LMs exhibit potential for understanding vowels and tongue positions when reference examples are provided while they have difficulties without them. Our code for dataset building is available on GitHub.
Can Impressions of Music be Extracted from Thumbnail Images?
Harada, Takashi, Motomitsu, Takehiro, Hayashi, Katsuhiko, Sakai, Yusuke, Kamigaito, Hidetaka
In recent years, there has been a notable increase in research on machine learning models for music retrieval and generation systems that are capable of taking natural language sentences as inputs. However, there is a scarcity of large-scale publicly available datasets, consisting of music data and their corresponding natural language descriptions known as music captions. In particular, non-musical information such as suitable situations for listening to a track and the emotions elicited upon listening is crucial for describing music. This type of information is underrepresented in existing music caption datasets due to the challenges associated with extracting it directly from music data. To address this issue, we propose a method for generating music caption data that incorporates non-musical aspects inferred from music thumbnail images, and validated the effectiveness of our approach through human evaluations. Additionally, we created a dataset with approximately 360,000 captions containing non-musical aspects. Leveraging this dataset, we trained a music retrieval model and demonstrated its effectiveness in music retrieval tasks through evaluation.
IRR: Image Review Ranking Framework for Evaluating Vision-Language Models
Hayashi, Kazuki, Onishi, Kazuma, Suzuki, Toma, Ide, Yusuke, Gobara, Seiji, Saito, Shigeki, Sakai, Yusuke, Kamigaito, Hidetaka, Hayashi, Katsuhiko, Watanabe, Taro
Large-scale Vision-Language Models (LVLMs) process both images and text, excelling in multimodal tasks such as image captioning and description generation. However, while these models excel at generating factual content, their ability to generate and evaluate texts reflecting perspectives on the same image, depending on the context, has not been sufficiently explored. To address this, we propose IRR: Image Review Rank, a novel evaluation framework designed to assess critic review texts from multiple perspectives. IRR evaluates LVLMs by measuring how closely their judgments align with human interpretations. We validate it using a dataset of images from 15 categories, each with five critic review texts and annotated rankings in both English and Japanese, totaling over 2,000 data instances. The datasets are available at https://hf.co/datasets/naist-nlp/Wiki-ImageReview1.0. Our results indicate that, although LVLMs exhibited consistent performance across languages, their correlation with human annotations was insufficient, highlighting the need for further advancements. These findings highlight the limitations of current evaluation methods and the need for approaches that better capture human reasoning in Vision & Language tasks.
Theoretical Aspects of Bias and Diversity in Minimum Bayes Risk Decoding
Kamigaito, Hidetaka, Deguchi, Hiroyuki, Sakai, Yusuke, Hayashi, Katsuhiko, Watanabe, Taro
Text generation commonly relies on greedy and beam decoding that limit the search space and degrade output quality. Minimum Bayes Risk (MBR) decoding can mitigate this problem by utilizing automatic evaluation metrics and model-generated pseudo-references. Previous studies have conducted empirical analyses to reveal the improvement by MBR decoding, and reported various observations. However, despite these observations, the theoretical relationship between them remains uncertain. To address this, we present a novel theoretical interpretation of MBR decoding from the perspective of bias-diversity decomposition. We decompose errors in the estimated quality of generated hypotheses in MBR decoding into two key factors: bias, which reflects the closeness between utility functions and human evaluations, and diversity, which represents the variation in the estimated quality of utility functions. Our theoretical analysis reveals the difficulty in simultaneously improving both bias and diversity, and highlights the effectiveness of increasing diversity to enhance MBR decoding performance. This analysis verifies the alignment between our theoretical insights and the empirical results reported in previous work. Furthermore, to support our theoretical findings, we propose a new metric, pseudo-bias, which approximates the bias term using gold references. We also introduce a new MBR approach, Metric-augmented MBR (MAMBR), which increases diversity by adjusting the behavior of utility functions without altering the pseudo-references. Experimental results across multiple NLP tasks show that the decomposed terms in the bias-diversity decomposition correlate well with performance, and that MAMBR improves text generation quality by modifying utility function behavior. Our code will be available at https://github.com/naist-nlp/mbr-bias-diversity.
BQA: Body Language Question Answering Dataset for Video Large Language Models
Ozaki, Shintaro, Hayashi, Kazuki, Oba, Miyu, Sakai, Yusuke, Kamigaito, Hidetaka, Watanabe, Taro
A large part of human communication relies on nonverbal cues such as facial expressions, eye contact, and body language. Unlike language or sign language, such nonverbal communication lacks formal rules, requiring complex reasoning based on commonsense understanding. Enabling current Video Large Language Models (VideoLLMs) to accurately interpret body language is a crucial challenge, as human unconscious actions can easily cause the model to misinterpret their intent. To address this, we propose a dataset, BQA, a body language question answering dataset, to validate whether the model can correctly interpret emotions from short clips of body language comprising 26 emotion labels of videos of body language. We evaluated various VideoLLMs on BQA and revealed that understanding body language is challenging, and our analyses of the wrong answers by VideoLLMs show that certain VideoLLMs made significantly biased answers depending on the age group and ethnicity of the individuals in the video. The dataset is available.
Centroid-Based Efficient Minimum Bayes Risk Decoding
Deguchi, Hiroyuki, Sakai, Yusuke, Kamigaito, Hidetaka, Watanabe, Taro, Tanaka, Hideki, Utiyama, Masao
Minimum Bayes risk (MBR) decoding achieved state-of-the-art translation performance by using COMET, a neural metric that has a high correlation with human evaluation. However, MBR decoding requires quadratic time since it computes the expected score between a translation hypothesis and all reference translations. We propose centroid-based MBR (CBMBR) decoding to improve the speed of MBR decoding. Our method clusters the reference translations in the feature space, and then calculates the score using the centroids of each cluster. The experimental results show that our CBMBR not only improved the decoding speed of the expected score calculation 5.7 times, but also outperformed vanilla MBR decoding in translation quality by up to 0.5 COMET in the WMT'22 En$\leftrightarrow$Ja, En$\leftrightarrow$De, En$\leftrightarrow$Zh, and WMT'23 En$\leftrightarrow$Ja translation tasks.
mCSQA: Multilingual Commonsense Reasoning Dataset with Unified Creation Strategy by Language Models and Humans
Sakai, Yusuke, Kamigaito, Hidetaka, Watanabe, Taro
It is very challenging to curate a dataset for language-specific knowledge and common sense in order to evaluate natural language understanding capabilities of language models. Due to the limitation in the availability of annotators, most current multilingual datasets are created through translation, which cannot evaluate such language-specific aspects. Therefore, we propose Multilingual CommonsenseQA (mCSQA) based on the construction process of CSQA but leveraging language models for a more efficient construction, e.g., by asking LM to generate questions/answers, refine answers and verify QAs followed by reduced human efforts for verification. Constructed dataset is a benchmark for cross-lingual language-transfer capabilities of multilingual LMs, and experimental results showed high language-transfer capabilities for questions that LMs could easily solve, but lower transfer capabilities for questions requiring deep knowledge or commonsense. This highlights the necessity of language-specific datasets for evaluation and training. Finally, our method demonstrated that multilingual LMs could create QA including language-specific knowledge, significantly reducing the dataset creation cost compared to manual creation. The datasets are available at https://huggingface.co/datasets/yusuke1997/mCSQA.
Simultaneous Interpretation Corpus Construction by Large Language Models in Distant Language Pair
Sakai, Yusuke, Makinae, Mana, Kamigaito, Hidetaka, Watanabe, Taro
In Simultaneous Machine Translation (SiMT) systems, training with a simultaneous interpretation (SI) corpus is an effective method for achieving high-quality yet low-latency systems. However, it is very challenging to curate such a corpus due to limitations in the abilities of annotators, and hence, existing SI corpora are limited. Therefore, we propose a method to convert existing speech translation corpora into interpretation-style data, maintaining the original word order and preserving the entire source content using Large Language Models (LLM-SI-Corpus). We demonstrate that fine-tuning SiMT models in text-to-text and speech-to-text settings with the LLM-SI-Corpus reduces latencies while maintaining the same level of quality as the models trained with offline datasets. The LLM-SI-Corpus is available at \url{https://github.com/yusuke1997/LLM-SI-Corpus}.
Does Pre-trained Language Model Actually Infer Unseen Links in Knowledge Graph Completion?
Sakai, Yusuke, Kamigaito, Hidetaka, Hayashi, Katsuhiko, Watanabe, Taro
Knowledge graphs (KGs) consist of links that describe relationships between entities. Due to the difficulty of manually enumerating all relationships between entities, automatically completing them is essential for KGs. Knowledge Graph Completion (KGC) is a task that infers unseen relationships between entities in a KG. Traditional embedding-based KGC methods, such as RESCAL, TransE, DistMult, ComplEx, RotatE, HAKE, HousE, etc., infer missing links using only the knowledge from training data. In contrast, the recent Pre-trained Language Model (PLM)-based KGC utilizes knowledge obtained during pre-training. Therefore, PLM-based KGC can estimate missing links between entities by reusing memorized knowledge from pre-training without inference. This approach is problematic because building KGC models aims to infer unseen links between entities. However, conventional evaluations in KGC do not consider inference and memorization abilities separately. Thus, a PLM-based KGC method, which achieves high performance in current KGC evaluations, may be ineffective in practical applications. To address this issue, we analyze whether PLM-based KGC methods make inferences or merely access memorized knowledge. For this purpose, we propose a method for constructing synthetic datasets specified in this analysis and conclude that PLMs acquire the inference abilities required for KGC through pre-training, even though the performance improvements mostly come from textual information of entities and relations.